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Abstract

X-ray mirrors with high focusing performances are in use in both mirror mod-
ules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser)
beamlines. A degradation of the focus sharpness arises in general from geo-
metrical deformations and surface roughness, the former usually described by
geometrical optics and the latter by physical optics. In general, technological
developments are aimed at a very tight focusing, which requires the mirror
profile to comply with the nominal shape as much as possible and to keep
the roughness at a negligible level. However, a deliberate deformation of the
mirror can be made to endow the focus with a desired size and distribution,
via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra.
The resulting profile can be characterized with a Long Trace Profilometer
and correlated with the expected optical quality via a wavefront propagation
code. However, if the roughness contribution can be neglected, the com-
putation can be performed via a ray-tracing routine, and, under opportune
assumptions, the focal spot profile (the Point Spread Function, PSF) can
even be predicted analytically. The advantage of this approach is that the
analytical relation can be reversed; i.e, from the desired PSF the required
mirror profile can be computed easily, thereby avoiding the use of complex
and time-consuming numerical codes. The method can also be suited in the
case of spatially inhomogeneous beam intensities, as commonly experienced
at Synchrotrons and FELs. In this work we expose the analytical method
and the application to the beam shaping problem.
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1. Introduction

An important problem in X-ray optics is the prediction of the image
quality from surface imperfections of a focusing, grazing-incidence mirror.
This task is traditionally achieved via ray-tracing routines in the long spa-
tial wavelengths spectral range, in which geometric optics is believed to be
valid, and applying the known X-ray scattering theory in the high frequen-
cies realm. Detailed information on the profile, and statistical information
on the roughness of a grazing incidence mirror, enable the computation of
the Point Spread Function (PSF) of the mirror [1] or system of mirrors [2]
at any X-ray wavelength.

However, the inverse problem, i.e., the analysis of the PSF to derive the
mirror profiles, has received less attention. While in the first-order scatter-
ing regime the theory allows an immediate inversion of the formalism, i.e.,
from the scattering distribution to the Power Spectral Density (PSD) of the
surface roughness [3], in geometrical optics we still lack a direct, analytical
method to connect the profile error to the shape of the PSF. Such a method
could have application especially in beam shaping techniques that turn the
radiation intensity distribution provided by a source like a FEL (Free Elec-
tron Laser) into another one on the focal plane, via a deformable mirror.
Beam shaping techniques are being adopted at the EIS-TIMEX beamline of
FERMI@Elettra [4].

In this paper we establish an analytical relation between the simplest

profile of a single-reflection mirror characterized by a real longitudinal profile
zm(x) and its PSF in the nominal focal plane. We suppose the focal plane to
be located at a distance f from the mid-plane of the mirror (Fig. 1), assumed
as origin of the reference frame, and we denote the nominal profile of the
mirror with zn(x), of length L over the x-axis. The negative x semi-axis points
toward the focal plane. For on-ground X-ray sources like Synchrotrons or
FELs, which are located at a large, but finite distance, the focusing profile is
usually an ellipsoid. For astronomical sources, in practice at infinity, imaging
is obtained via mirror systems including a paraboloid, usually followed by a
second reflection on a hyperboloid [5]. In most cases, the nominal profile
is designed to concentrate the beam to a single point on the focal plane, at
(0, −f); the resulting PSF is a Dirac delta function. Sometimes, the mirror
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Figure 1: (a) A focusing mirror with ideal profile. (b) Profile errors spread
the reflection over the focal plane.

geometry deliberately allows some tolerable aberration on-axis, to improve
the focus off-axis and so increase the mirror useful field [6].

Indeed, real mirrors are characterized by profile defects that can be mea-
sured, e.g., using a Long Trace Profilometer [7]. While the specific nominal
shape affects the existence, the location, and the intrinsic aberrations of an
ideal mirror focus, the PSF of a real mirror focus mostly depends on the
mirror profile error,

ze = zm − zn. (1)

The resulting slope distribution spreads the PSF over the focal plane. The
PSF also depends on the distribution of the intensity over the mirror length:
astronomical sources illuminate uniformly the mirrors owing to their prac-
tically infinite distance. Conversely, FEL sources are characterized by a
markedly anisotropic brilliance, usually Gaussian. Therefore, the deforma-
tions of near the mirror center usually affect the PSF much more than those
near the edges.

A ray-tracing routine is the most widespread method adopted to compute
the PSF from the X-ray mirror shape and illumination, in geometrical optics
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approximation, even if the results are difficult to express analytically. For
simplicity, we heretofore suppose these 3 conditions to be fulfilled:

• the geometrical optics approximation is applicable, i.e., the effects of
surface roughness and aperture diffraction are negligible;

• the roundness (sagittal) errors have a negligible impact on the PSF;

• the X-ray source can be assumed to be point-like.

The first condition is not always easy to verify a priori, because the spectral
range of spatial frequencies where the geometrical optics can be applied varies
with the X-ray energy, the incidence angle α, and even the amplitude of
defects [1, 2, 8].

The second condition is usually fulfilled in grazing incidence, because the
roundness errors effect is suppressed by a factor of 1

2
tan 2α with respect to

the axial errors. This allows us to reduce the relation profile-PSF to only one
dimension, considering the sole, dominating effect of the axial profile errors,
ze(x). Also the PSF dependence is reduced to a single variable, the θ angle
(Fig. 1).

The applicability of the third condition depends on the specific applica-
tion and the accuracy requested in shaping the focused beam. In practice, it
is met whenever the source, as imaged and demagnified on the focal plane,
is much smaller than the desired beam size.

Although a PSF can be computed univocally via a ray-tracing routine,
there is in general more than one ze(x) to return a single PSF (Fig. 2). The
PSF results from angular deviations of rays on the surface, so it depends
more on the slope distribution than on the mirror profile itself. Among all
the possible mirror profiles, we thereby select the only one that fulfills the
additional condition:

• the derivative of the profile error, z′e, shall increase monotonically over
the profile, i.e., the concavity of ze must always be upwards.

This condition is not related to intrinsic curvature of the mirror, whose nom-
inal profile zn(x) must be concave upwards in order to have focusing prop-
erties, but simply operates a selection among all the infinite possible profile
errors, which in principle can have any concavity. For example, all the sinu-
soidal errors in Fig. 2a return the same PSF, but only the solid line fulfills
the z′e monotonicity condition. In the Sect. 2 of this paper we see that this
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Figure 2: An example of PSF degeneracy: (a) sinusoidal profile errors ze of
different period, 2L, and amplitude, A, but the same A/L ratio, (b) return
the same PSF (Eq. 17). Only the solid line, however, does not exhibit cur-
vature inversions and is suitable for the calculation in Sect. 2. The beam
intensity that impinges on the mirror is assumed to be uniform.
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selection establishes a one-to-one correspondence between locations on the
mirror and on the focal plane: this in turn allows us to set an analytical rela-
tion between a profile error with these properties and a PSF. Some examples
of computation are shown in Sect. 3.

2. Analytical relation between mirror profile and in-focus PSF

2.1. From profile to PSF

We define g(x) to be the beam intensity distribution over the mirror
length, in the x direction: we require that g(x) ≥ 0 for all −L

2
< x < +L

2

and that g is normalized to 1 over the mirror length,

∫ +L/2

−L/2

g(x) dx = 1 : (2)

if the beam distribution is uniform, g(x) = 1/L.
Rays impinging on the mirror at the coordinates (x, zm) are deviated from

the focus according to the local slope. The angular deviation of the ray, owing
to the small angle approximation, is twice the slope error, z′m(x) − z′n(x) =
z′e(x). After traveling a distance f +x (Fig. 1), they intersect the focal plane
with a lateral displacement

zF = ze(x) + 2(f + x)z′e(x); (3)

as the deformations are usually below the micron and f is of several metres,
the 2nd term is overwhelmingly dominant. Hence, the angle seen from the
centre of the optic (Fig. 1) is θ ≃ zF/f , or

θ(x) ≃ 2
f + x

f
z′e(x). (4)

By hypothesis, the derivative z′e(x) is an increasing function of x, so θ is
also an increasing function of x. Therefore, we have a one-to-one correspon-
dence x ↔ θ. In most cases, the mirror length is negligible with respect to
the focal length, and Eq. 4 reduces to θ(x) ≈ 2z′e(x).

We now divide the mirror profile into segments of variable length, ∆xk,
with k = 0, 1, · · · aiming at constant derivative changes, ∆z′e (Fig. 3). In this
way, the derivative of the segments takes on discrete, equally-spaced values
z′e,k, increasing from its minimum z′e,m at x = −L/2, to its maximum z′e,M
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Figure 3: Profile errors with discrete steps in the derivative. Each step results
in a delta-like peak in the PSF: the integral of each peak is proportional to
the width of the respective step in the profile and to the beam intensity at
that position. As the steps are reduced, the peaks become lower and closer,
and tend to a continuous PSF.

at x = +L/2. Likewise, θ increases as per Eq. 4 over the focal plane from
its minimum, θm, to its maximum, θM. Rays striking on the mirror between
xk and xk + ∆xk reach the focal plane at angles between θk and θk + ∆θk,
with an intensity ∆I(θk) proportional to the length of the kth segment and
to g(xk),

∆I(θk) ∝ g(xk)
√

(∆xk)2 + (∆zk)2 ≈ g(xk)∆xk. (5)

The ∆θk’s are obtained by differentiating Eq. 4,

∆θk = 2
f + xk

f
∆z′e +

2

f
∆ze,k : (6)

owing to the large focal length, the second term of Eq. 6 is negligible. Clearly,
∆θk > 0. The PSF is the intensity in the nominal focal plane per angle unit,
∆I(θk)/∆θk:

PSF (θk) = g(xk)
∆xk

∆θk
= g(xk)

f

2(f + xk)

(

∆z′e
∆xk

)

−1

. (7)
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Passing to the actual profile in the limit ∆z′e → 0, Eq. 7 turns into

PSF (θ) =
ga(x)

2 z′′e (x)

∣

∣

∣

∣

x=x(θ)

, (8)

for all values of θ that correspond to some x via Eq. 4 – that can be in-
verted because of the supposed z′e(x) monotonicity – and zero elsewhere. To
simplify the notation, in Eq. 8 we have introduced the asymmetric intensity
distribution,

ga(x) =
f

f + x
g(x). (9)

In the limit of a regular profile, Eq. 6 becomes

θ′(x) = 2
f + x

f
z′′e (x); (10)

therefore Eq. 8, as expected, is normalized to 1 over the focal plane:

∫ θM

θm

PSF (θ) dθ =

∫ z′
e,M

z′e,m

g(x)
dz′e
z′′e

=

∫ +L/2

−L/2

g(x) dx = 1. (11)

As z′e(x) is an increasing function of x, z′′e (x) ≥ 0. Hence, Eq. 8 returns a
positive and finite PSF wherever z′′e (x) > 0. If z′′e (x) = 0 at some x, however,
some attention should be paid when applying Eq. 8:

• If z′′e (x) = 0 at some isolated x = x̄, i.e., the profile error tend to be
straight as x̄ is approached, then the PSF diverges to infinity at θ(x̄)
but Eq. 8 can be applied at all the nearby locations. In practice, this
produces a sharp peak, but not a Dirac delta, in the PSF. Anyway, the
integral of the PSF remains finite (Eq. 11).

• If z′′e (x) = 0 in one or more intervals of the kind [xj , xj + ∆xj ], with
j = 1, 2, . . . , N , then ze(x) exhibits N straight segments and θ(x) has N
”plateaux”, i.e., θ = θ(xj) in correspondence of those positions. Hence,
the relation θ = θ(x) cannot be reversed anymore. Physically, all the
intensity impinging on the linear segments is focused at θ(xj), resulting
in Dirac deltas at those locations. To extend the computation to this
case, we have two possibilities:
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1. g(x) = 0 wherever z′′e (x) = 0. Therefore, the straight segments
do not give contribution to the PSF and Eq. 8 can be used: for-
tunately, profile deformations obtained from the inverse formula
(Eq. 15) fall precisely in this case.

2. g(x) > 0 in some interval where z′′e (x) = 0. In this case, the
straight segments shall be firstly removed from the profile before
applying Eq. 8. The contribution of the straight segments, PSFstr,
should be subsequently included by adding N Dirac deltas to the
PSF,

PSFstr(θ) =

N
∑

j=1

δ(θ − θ(xj)), (12)

each of them normalized to the total intensity impinging on the
j-th segment:

∫ θM

θm

δ(θ − θ(xj)) dθ =

∫ xj+∆xj

xj

g(x) dx. (13)

• If z′e(x) is discontinuous at some x = x̄ (a ”kink” in the profile) like in
Fig. 4b, then z′′e (x) is infinite at x̄, so PSF (θ) = 0 for all values of θ in
the interval corresponding via Eq. 4 to the z′e(x) leap at x̄.

2.2. From PSF to profile

We now derive the reverse form of Eq. 8, which can be directly applied to
the problem of beam shaping (Sect. 3.2). For any PSF (θ) ≥ 0 at the focal
plane defined at angles [θm, θM], and for any g(x) ≥ 0 over the mirror length
[−L/2, +L/2], a profile error can be computed under the conditions listed
in Sect. 1. The substitution of Eq. 9 and 10 reduces Eq. 8 to

PSF (θ) · θ′(x) = g(x). (14)

This simple differential equation is solved if z′e(x) is known at one value of
x. This choice affects the average tilt of the profile, hence it will change the
position, but not the shape of the PSF: for instance, a natural choice for a
symmetric PSF could be z′e(0) = 0. However, since both distributions are
normalized to 1, it is convenient to set z′e

(

−L
2

)

= θm. This choice preserves
also the position of an asymmetric PSF on the angular scale.
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Figure 4: (a) An unusual PSF (solid line) with two gaps. (b) The profile
deformation imparted to the mirror is computed from the requested PSF,
via Eq. 15, assuming an isotropic X-ray source, and f ≫ L. The profile
exhibits two discontinuities in z′e (”kinks”) corresponding to the two gaps in
the PSF. Applying a ray-tracing routine to the computed profile yields back
the initial PSF shown in Fig. 4a (dashed line).
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Hence, integrating both sides of Eq. 14, we have

∫ 2 f+x

f
z′e

θm

PSF (θ) dθ =

∫ x

−
L
2

g(t) dt, (15)

and, if the integrations can be performed, the equation can be solved for z′e(x)
for any x in the interval [−L/2,+L/2]. Finally, a further integration returns
ze(x). For Eq. 15 to be applied, the PSF must be normalized to 1 over the
focal plane, and g(x) must be normalized to 1 over the mirror length (Eq. 2),
not over the entire x-axis, otherwise the profile error will return only the core
of the PSF: i.e., the part of the PSF that is normalized to the integral of g(x)
over the mirror length.

As long as both PSF (θ) > 0 for all θ and g(x) > 0 for all x, the integrals
in Eq. 15 are increasing functions of the upper integration limits. There-
fore, solving for z′e will automatically return an increasing function of x, i.e.,
an upwards concave profile error as required (Sect. 1). Likewise the direct
computation (Sect. 2.1), a few special cases deserve some attention:

• g(x) = 0 for some x: this occurs, e.g., if the beam extension over x
is smaller than the mirror length. In this case, solving Eq. 15, z′e(x)
will be a constant where g(x) = 0, resulting in straight segments of
ze. This appears reasonable, because there is nothing to shape where
the intensity is zero. As we anticipated in the previous section, in the
straight segments z′′e (x) = 0, but also g(x) = 0, so the re-application of
Eq. 8 to the generated profile does not pose a problem.

• PSF (θ) = 0 at some θ, like in the example shown in Fig. 4a: this
situation leads to inversion problems, because the left-hand of Eq. 15
becomes a constant in an interval of z′e for a single x̄. A way to extend
the computation to this case is to adopt for z′e(x̄) the limit value at

the closest edge of the intervals where left-hand of Eq. 15 is constant.
In most cases, these intervals are in the PSF wings and do not pose a
problem. Otherwise, they result in a z′e discontinuity at x̄, i.e. a kink
in ze (Fig. 4b).

3. Some examples

3.1. A direct computation

We hereafter consider some application of Eq. 15, assuming for simplicity
f ≫ L, i.e., which implies the asymmetry factor (Eq. 9) to be completely
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negligible. For example, if the profile error is a half-sinusoid

ze(x) = −A cos
(π

L
x
)

, (16)

and the beam is initially uniform, Eq. 8 returns a typical, diverging PSF:

PSF (θ) =
1

π

[

(

2πA

L

)2

− θ2

]

−1/2

, (17)

with |θ| < 2πA/L, and zero elsewhere. A PSF of this kind was shown in
Fig. 2b. The HEW (Half Energy Width, i.e. the angular diameter including
half integral of the PSF) can be directly computed from Eq. 17:

HEW =
√
8π

A

L
. (18)

3.2. Some inverse computations

Inverse computations are more interesting, because they can be directly
applied to beam-shaping problems. For instance, if a uniform beam impinges
on a focusing mirror, which deformation yields a Lorentzian-shaped PSF,

PSF (θ) =
2w

π(w2 + 4θ2)
, (19)

with w – the HEW parameter – arbitrary? For simplicity, we have assumed
the focal plane to be infinitely extended, so Eq. 19 is normalized to 1. The
substitution of g(x) = 1/L and Eq. 19 into Eq. 15 yields, neglecting the
asymmetry factor (Eq. 9) and assuming z′e(0) = 0 because of the PSF sym-
metry,

arctan

(

4z′e
w

)

=
πx

L
. (20)

Then, Eq. 20 can be solved for z′e:

z′e(x) =
w

4
tan

(πx

L

)

, (21)

which returns by integration the desired profile

ze(x) = −Lw

4π
log cos

(γx

L

)

, (22)
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Figure 5: (a) Some Lorentzian PSFs (Eq. 19) characterized by different
widths. (b) The deformations to be superposed to the nominal profile
(Eq. 22) to obtain the Lorentzian PSF, if the mirror is uniformly illuminated
and f ≫ L.
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Figure 6: (a) A top-hat distribution of 4 µrad full width (Eq. 23) and (b) the
profile deformations (Eq. 26) to turn a Lorentzian g(x) of variable width δ
into that PSF. We note that the profiles tend to become straight as g(x) → 0
toward the edges of the mirror profile.
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with γ . π to avoid the profile divergence at the mirror edges. The exact
choice of γ really affects only the very edges of the mirror profile: a suitable
value can be e.g., γ = 3.12. In Fig. 5a we display some Lorentzian PSFs for
different values of w, and the respective profile errors are reported in Fig. 5b.

We now consider an initially anisotropic source (like a FEL) that has to
be turned into, e.g., a top-hat PSF of full width w (Fig. 6a):

PSF (θ) =
1

w
for − w

2
< θ < +

w

2
. (23)

For simplicity, g(x) is supposed to be a Lorentzian function over the mirror
length,

g(x) =
2δ

π(δ2 + 4x2)
. (24)

where δ is the HEW parameter. If δ ≪ L, g(x) is nearly normalized to 1
over the mirror length. Substituting Eqs. 23 and 24 into Eq. 15, we derive,
neglecting the asymmetry factor (Eq. 9),

z′e(x) =
w

2π
arctan

(

2x

δ

)

, (25)

where we have set, owing to the PSF symmetry, z′e(0) = 0. Eq. 25 can be
easily integrated by parts, yielding

ze(x) =
w

2π

[

x arctan

(

2x

δ

)

− δ

4
log

(

1 +
4x2

δ2

)]

: (26)

some profiles of this kind are shown in Fig. 6b. The beam-shaping prob-
lem under study at the EIS-TIMEX beamline of FERMI [4] requires the
same computation, even if the initial intensity matches more a Gaussian
than a Lorentz function. Since a Gaussian function cannot be integrated
analytically, the profile computation has to be performed by solving Eq. 15
numerically.

In Fig. 7 we show the same exercise aiming at a PSF with King profile,
i.e., a generalization of Eq. 24:

PSF (θ) =
2N

πw[1 + (2θ/w)2β]
, (27)

where w is a width parameter, β > 0 is a slope parameter and N is a normal-
ization factor over the focal plane. We suppose g(x) to still be a Lorentzian:
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the integration of a King function cannot be performed analytically, so the
computation of the mirror deformation has to be obtained numerically. The
PSFs and the corresponding mirror profiles are shown in Fig. 7. We note that
the mirror profiles tend to resemble the ones of Fig. 6 as the PSF converges
to a top-hat shape, i.e., for increasing values of β.
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Figure 7: (a) King-shaped PSFs (Eq. 27) with w = 4 µrad for different values
of the β parameter. (b) The required profile deformations to obtain the PSFs
if g(x) is a Lorentzian (Eq. 24) with δ = 57 mm.
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4. Conclusions

In this work we have shown how the well-known problem of computing
a focusing mirror PSF from the profile errors can be solved analytically for
the special class of upwards-concave profiles. Although this seems less useful
than a ray-tracing, a great advantage is the possibility to invert the formal-
ism and derive a mirror profile deformation from a desired PSF. This can
be done analytically in a number of cases, and numerically in any case. The
resulting profile is the simplest possible one, as it does not exhibit undula-
tions, therefore it should be possible to reproduce, e.g., via piezo actuators.
Only if a PSF exhibits gaps, the profile will present kinks that can pose more
difficulties to the shaping. It should be kept in mind that the results may
differ from predictions if the initial hypotheses are not fulfilled:

• If the geometrical optics is not completely applicable, a self-consistent
treatment that includes the effect of aperture, mid-frequency defects,
and roughness [1, 2] has to be considered, but the formalism becomes
very difficult to reverse.

• If the sagittal errors are not negligible, the PSF has to be computed
via a complete ray-tracing routine, which is also difficult to reverse.

• If the source size is not negligible, the demagnified source has to be
convolved with the ideal PSF. Therefore, to compute the correct profile
deformation from a requested PSF, the demagnified source profile has
to be preliminarily de-convolved, which is not always possible.

The extension of the formalism hitherto presented to the mentioned situa-
tions, and the computation for the case of EIS-TIMEX, will be the subject
of a subsequent paper.
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