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ABSTRACT   

One of the problems often encountered in X-ray mirror manufacturing is setting proper manufacturing tolerances to 
guarantee an angular resolution - often expressed in terms of Point Spread Function (PSF) - as needed by the specific 
science goal. To do this, we need an accurate metrological apparatus, covering a very broad range of spatial frequencies, 
and an affordable method to compute the PSF from the metrology dataset. In the past years, a wealth of methods, based 
on either geometrical optics or the perturbation theory in smooth surface limit, have been proposed to respectively treat 
long-period profile errors or high-frequency surface roughness. However, the separation between these spectral ranges is 
difficult do define exactly, and it is also unclear how to affordably combine the PSFs, computed with different methods 
in different spectral ranges, into a PSF expectation at a given X-ray energy. For this reason, we have proposed a method 
entirely based on the Huygens-Fresnel principle to compute the diffracted field of real Wolter-I optics, including 
measured defects over a wide range of spatial frequencies. Owing to the shallow angles at play, the computation can be 
simplified limiting the computation to the longitudinal profiles, neglecting completely the effect of roundness errors. 
Other authors had already proposed similar approaches in the past, but only in far-field approximation, therefore they 
could not be applied to the case of Wolter-I optics, in which two reflections occur in sequence within a short range. The 
method we suggest is versatile, as it can be applied to multiple reflection systems, at any X-ray energy, and regardless of 
the nominal shape of the mirrors in the optical system. The method has been implemented in the WISE code, 
successfully used to explain the measured PSFs of multilayer-coated optics for astronomic use, and of a K-B optical 
system in use at the FERMI free electron laser. 
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1. INTRODUCTION: THE PROBLEM OF PSF COMPUTATION IN X-RAY MIRRORS 
The prediction of the optical performances of X-ray mirrors is a crucial problem in the treatment of metrological data. 
An accurate simulation of the imaging quality allows us to determine if an optical system is suitable for the specific 
application, and conversely to establish manufacturing tolerances. The optical quality is usually expressed quantitatively 
via the PSF (Point Spread Function), i.e., the annular integral of the intensity around the center of the focal spot, divided 
by the annulus radial amplitude and normalized to the radiation intensity collected by the mirror aperture. The PSF 
calculation from metrology (including profiles measured e.g., with LTP[1], and roughness measured with methods like 
PSI, Phase Shift Interferometry, or AFM, Atomic Force Microscopy) is therefore a fundamental task to check the optical 
performances for both astronomical and Synchrotron/Free Electron Laser (FEL) imaging applications.  

In X-ray astronomical mirrors, angular resolutions HEW (Half Energy Width, the angular diameter enclosing 
50% of the focused rays) of a few arcsec are required to avoid source confusion in astronomical images. At the same 
time, optics for X-ray telescopes require a large effective area and need to be operated in space, so they are typically 
manufactured nesting several grazing incidence mirrors, each of them with Wolter-I[2] or polynomial[3] longitudinal 
profile, into a densely packed assembly. The mirror walls have to be kept as thin as possible (a few tenth mm) to ensure 
high filling of the telescope aperture, but keeping the mass within acceptable limits for the launch. In turn, thin mirrors 
are prone to deform, which goes at the expense of the angular resolution. In addition, the large number of mirrors to be 
manufactured entails an industrial production process, in which the surface of each individual mirror cannot undergo a 
dedicated polishing process. For this reason, a tolerable level of profile errors and surface roughness, strictly depending 
on the scientific requirement on the HEW, shall be established prior to manufacturing. For example, the ATHENA X-
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2) The “rms of a single harmonic” makes sense only if the power spectrum is discrete. If the PSD is a continuous 
function of the spatial frequency ν (like in a power-law model), the rms of one harmonic is zero, while the rms 
in a frequency band [ν and ν+Δν] makes a physical sense. In real cases, the profile has a finite length L, so ν 
can be known at minimum steps Δνmin = 1/L. This would make the separation roughness/figure a function of the 
mirror length (or the instrumental scan length), whereas it ought to be only a function of the surface finishing.  

3) It is dangerous to apply physical models out of their domain of validity. For example, a ray-tracing routine 
applied to a profile including roughness defects often returns visibly wrong results. But also the application of 
the first-order scattering theory at frequencies near 1/L is often incorrect. 

Finally, we mention that scattering theories exist to overcome the smooth-surface limit[13],[14], but the theory was always 
limited to the case of stochastically rough surfaces, and seems not to have been extended to mirrors including 
deterministic profile errors. However, a question still remains: even assuming that we are able to locate the boundary 
frequency geometry/roughness, and that we are able to correctly treat the mid-frequency range, when we have separately 
computed the PSFs for the 3 regimes shown in Fig. 1, how shall we combine them together to return the final PSF? 
Even if a convolution might seem a natural answer, it can be proven to be in general incorrect[15]. 

In this work we will provide a general and self-consistent method to compute the PSF from a profile and 
roughness PSD characterization of a mirror, without any assumption excepting that X-rays impinge at a shallow grazing 
angle, α0. This method, which we already presented in some previous SPIE papers[16],[17],[18], is based on the Huygens-
Fresnel principle, which can be applied without restrictions. In this way, the old problem of setting boundary 
frequencies between figure/waviness/roughness, with all the aforementioned difficulties, does no longer need to be 
solved! 

 In Sect. 2 we see that in grazing incidence the Huygens-Fresnel principle application is simplified, because the 
computation can be performed in only one dimension, i.e., in the mirror longitudinal direction. In this way, we can 
derive an integral formula (Sect. 3) to calculate the PSF of a mirror with any profile, for any value of the light 
wavelength λ. In Sect. 4 we extend the method to double-reflection systems, like the Wolter-I frequently adopted in X-
ray telescopes, and in Sect. 5 we recall some experimental validation by comparison of the predictions with the 
measured PSFs at the SPring-8 synchrotron light source[19] and at the FERMI@Elettra FEL[20].  

2. THE HUYGENS-FRESNEL PRINCIPLE IN 1 DIMENSION 
An application of the Huygens-Fresnel principle to a 2D mirror surface can be a relevant computational load. For this 
reason, most wavefront propagation codes operate on mirrors known analytically or mapped at a resolution of a few 
millimeters. This is an acceptable sampling for mirrors operating in the visible range, in which the achieved level of 
surface polishing is known to reduce the optical scattering to negligible levels.  

Fig. 2: justification of the 1D approximation in geometrical optics and in the scattering theory. (left) effect of a slope error θ in a 
grazing-incidence mirror (incidence angle α) in the transverse (azimuthal) direction. The effective angular departure from the ideal 
focus (green dot) is θ tan(2α) Vs. a 2θ angular deviation that the ray would experience if the slope error were in the longitudinal 
direction. (right) 2D computed scattering pattern off a Silicon surface for 8 keV X-rays impinging at 600 arcsec off-surface (simulated 
via the IMD package[22] by D. Windt**). The isophotes are ellipses extremely elongated in the incidence plane (the horizontal axis: the 
vertical scale is heavily stretched). 
                                                 
** http://www.rxollc.com/idl/ 
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It is interesting to note that, to within the numerical computation accuracy[15], 

න PSF(ݔ)dݔାஶ
ିஶ = 1 

 
(4) 

i.e., the PSF integrated over x correctly returns the entire collected intensity, for any value of λ. However, if the 
integration is performed over a 1D detector (a “focal line”) of side ρ, then the integration may return a value smaller 
than 1. Since the PSF is absolutely normalized to the power impinging onto the mirror, a PSF normalization smaller than 
1 physically indicates that the PSF is broad enough for its wings to fall out of the detector area. The FWHM 
computation from the PSF is straightforward. The HEW is simply computed as twice the median value of the PSF, 
provided that the integral of the PSF within the focal line length is larger than 50%. If this is not possible, the HEW can 
be computed after re-normalizing to 1 the PSF computed within the focal line extent.  

A numerical computation of the integral in Eq. 3 entails a sampling of the profile x1(z1), with f < z1 < f +L1, and of 
the focal line, at -ρ/2 < x < +ρ/2. The 1st order scattering theory allows us to determine the minimum sampling 
steps[16],[17] necessary to avoid “ghost” features in the PSF: ∆ݖଵ = ߨ4݂ߣ sinߙଵ  ߩ

 
(5) 

ଵݔ∆  = ߨ2݂ߣ sin ଵߙ  ଵܮ
 
(6) 

where α1 = α0+δ. We notice that the number of points in the sampled profile and in the sampled focal line is the same 
number, N, and that the substitution of reasonable values in Eqs. 5 and 6 (e.g., λ = 12 Å, f = 10 m, α1 = 0.5 deg, L1 = 200 
mm, ρ = 20 mm) yields N ≈ 4 × 104, a number of terms that can be easily managed. A simple IDL code developed to 
implement the formulae reported in this paper, named WISE (Wavefront propagatIon Simulation codE), run in a 
computer with a 2.4 GHz processor, achieves the computation with the parameters listed above in a 5 min time. The 
number of required operations increases with λ-2, and so does the computation time. We finally mention that this 
formalism can be easily adapted to extended X-ray sources, spatially and temporally coherent or not[15]. 

3.2. The PSF in the far-field limit 

In the astronomical case S → +∞, and if f >> L1, then the square root in the integrand of Eq. 3 varies slowly with respect 
to exponential and can be approximated by the constant (R0/f )1/2. So Eq. 3 takes a simpler form, already derived in a 
previous work[16]: 

PSF(ݔ) = ∆ܴଵܮଵଶ݂ߣ ቮ න ݁ିଶగ௜ఒ ቈට(௫భି௫)మା௭భమି௭భ቉ dݖଵ௙ା௅భ
௙ ቮଶ 

 
(7) 

The real mirror profile x1 can be decomposed into the nominal profile, x1n (parabola, hyperbola, ellipse…) and a profile 
error term x1e, including profile defects over all spatial scales. Substituting x1 = x1n+x1e into Eq. 7, developing the 
exponent and the root at the first order, and imposing that x1n focuses exactly to (0,0), after some handling[15] we obtain 
the well-known, far-field approximate form of the PSF formula, 

PSF(߮) = 1∆ܴଵߣ ቮන ݁ିଶగ௜ఒ ௫భ౤ఝ CPF(ݔଵ୬)dݔଵ୬ାஶ
଴ ቮଶ 

 
(8) 

where we have set ϕ = x/f, the angular deviation from the ideal focus (the origin of the reference frame), and the CPF is 
the Complex Pupil Function, CPF(ݔଵ୬) = exp ൬−2ߣ݅ߨ ଵୣݔ2 sin  ଴൰ (9)ߙ

We therefore see that the PSF formula (Eq. 3) correctly reduces in the far-field limit to the squared module of the CPF 
Fourier Transform. This particular form cannot be used, however, to compute the PSF of Wolter-I mirrors, because -
among other things – in this case the square root in Eq. 1 cannot be approximated by a constant (Sect. 4).  
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3.3. PSF formula for anisotropic sources (Synchrotrons and Free Electron Lasers) 

Unlike natural X-ray sources (either astronomical or bremsstrahlung tubes), the brightness distribution of synchrotrons 
and FELs is highly directional and anisotropic. A FEL like FERMI[5] in its fundamental mode propagates in spherical 
waves, but the intensity over the wavefront is non-uniform, with a typical Gaussian intensity distribution[24]. The electric 
field amplitude over a focusing mirror surface (typically, with an elliptical profile) can be written as  

,ଵݔ)ݑ (ଵݖ = ඩΔܴଵݓ ඨ2ߨ exp ቈ− ଵݔ) − ܴ௖)ଶݓଶ ቉  
(10) 

where Rc = (R0+RM)/2, and the beam width w evolves along the propagation in inverse proportion to the source width w0. 
At the mirror location we can write, to a good approximation, w ≈ λD/fw0. The multiplicative constant in Eq. 10 is 
chosen to normalize to 1 the average beam intensity.  

Because the wavefront are still spherical, the PSF equation (Eq. 3) can be immediately extended to this case, 
weighting the integrand over the amplitude distribution: 

PSF(ݔ) = ∆ܴଵܮଵଶܴߣ଴ ቮ න ,ଵݔ)ݑ ଵ)ඨݖ ଵ݀̅ଶ,଴ݔ ݁ିଶగ௜ఒ ቈௗതమ,బି௭భା ௫భమଶ(ௌି௭భ)቉ dݖଵ௙ା௅భ
௙ ቮଶ 

 
(11) 

A simple application of Eq. 11 is to a perfect ellipsoidal mirror in far-field approximation. Substituting Eq. 10 into Eq. 
11, and simplifying the integrand as we did in Sect. 3.2, we remain with 

PSF(ݔ) = ඥ2 ݂ߣݓ⁄ߨ ቮ න ݁ି൤(௫భିோ೎)మ௪మ ାଶగ௜௫భఒ௙ ௫൨ dݔଵோಾ
ோబ ቮଶ 

 
(12) 

thus, completing the square in the exponent we obtain, after some algebra, 

PSF(ݔ) = ඨ2ߨ ଴ݓ݂ܦ ݁ିଶቀ ஽௫௙௪బቁమ 
 
(13) 

where we assumed that ΔR1/2w → +∞, i.e., that the mirror is large enough to collect the entire Gaussian beam. Eq. 13 is 
exactly the source intensity profile, de-magnified by a factor of f /D. We have therefore obtained a geometrical optics 
result by application of the Fresnel diffraction. As we will see in Sect. 4, this is a very frequent situation. 

3.4. Treatment of roughness 

For a real focusing mirror, the PSF can be computed substituting into Eq. 3 (or Eq. 11 if the source is anisotropic) the 
real longitudinal profile x1(z1). As already mentioned, we can figure out that x1 is composed by the nominal profile x1n 
that focuses the beam to the origin of the reference frame, and a profile error x1e that determines the shape and the size of 
the focal spot. The profile error can be measured using a profilometer over the entire length of the mirror, but real 
instruments have a finite spatial resolution, so the measurement will be necessarily limited in spatial bandwidth. Yet an 
affordable PSF computation in X-rays also requires including roughness at higher spatial frequencies, at least up to the 
Nyquist frequency corresponding to the minimum sampling, νmin = 1/2Δz1 (Eq. 5). This frequency often falls in the 
micron range, and measurements with this resolution and accuracy cannot realistically be extended over the entire mirror 
length. For this reason, roughness measurement are sampled at different locations, assumed to be representative, treated 
as Power Spectral Density (PSD), and averaged in order to improve the statistical significance. 

The final PSD is a complete statistical characterization of surface defects distributed over different spatial 
frequencies, but it cannot be reversed to return the original profile. The reason is that the relative phase of the Fourier 
components is suppressed in the squared module operation. However, we can generate infinite different profiles 
consistent with that measured PSD, selecting the component phases at random (Fig. 5). We can therefore assume that the 
profile x1(z1) can be decomposed into three terms, splitting x1e into a directly measured term, x1meas, and another one 
reconstructed from the PSD characterization, x1PSD. So we have ݔଵ(ݖଵ) = (ଵݖ)ଵ୬ݔ	 + (ଵݖ)ଵ୫ୣୟୱݔ +  (14) (ଵݖ)ଵ୔ୗୈݔ
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We show in Fig. 5 two examples of profile reconstruction from a PSD according the widespread power-law 
model[7], where n, Kn are constants taking on values depending on the surface finishing level: ܲ(ߥ) = ௡ߥ௡ܭ  (16) 

The two simulations shown in Fig. 5 differ from each other not only for the relative phases of the components, but also 
because at higher energies (Fig. 5, right) the sampling step provided by Eq. 5 is smaller, so the PSD is resampled up to 
higher frequencies and the profile appears much more jagged. In other words, higher energies require a tighter sampling 
to fully compute the PSF within the detector field. The simulation at high energy will be affected by a larger amount of 
scattering, but this is not simply caused by the larger jaggedness of the profile. In fact, the high frequency band [60 µm – 
10 µm] is almost unseen in the PSF computed at 0.25 keV. This is shown in Fig. 6, where we see that increasing the 
profile sampling beyond Eq. 5 does not sensitively change the PSF at 0.25 keV. In contrast, rough profiles with the same 
sampling step of 5 µm yield completely different results at 0.25 keV and 1.5 keV (Fig. 6, right). We conclude that Eq. 5 
provides the correct profile sampling: a further Δz1 reduction to account for higher spatial frequencies seems to have a 
minor effect on the PSF. 

3.5. Treatment of mid-frequencies 

In this section we show the behavior of a profile perturbation with a spatial period of 1 cm, i.e., falling in the spatial 
range of mid-frequencies. As we anticipated in Sect. 1, this is the typical kind of defects that cannot be immediately 
classified as “figure error”, to be treated with ray tracing, and “roughness”, which can be studied with the scattering 
theory. In order to show the non-intuitive behavior of mid-frequencies, we hereby consider as a test case a sinusoidal 
perturbation,   ݔଵ୫ୣୟୱ(ݖଵ) = ܣ sin ൬2ܶߨ  ଵ൰ (17)ݖ

with T = 1 cm and A = 0.1 µm, superimposed to a parabolic mirror with 0.43 deg incidence angle, 10 m focal length. 
Applying geometrical optics, the expected PSF would be[25] 

PSF୥ୣ୭୫(߮) = ߨ1 ቈ൬4ܶܣߨ ൰ଶ − ߮ଶ቉ିଵ/ଶ 
(18) 

where ϕ = x/f. But, if we compute the PSF on the focal plane at increasing energies, from the UV range to X-rays, using 
the same equation (Eq. 3) assuming an isotropic source at infinite distance, the results are much complicated (Fig. 7). 
For comparison, we have also added in color the expectations from Eq. 18. 

In the UV range (λ = 1000 Å), the PSF consists almost completely of aperture diffraction, with the typical sinc 
shape. As the energy is increased (λ = 200 Å), the aperture diffraction is reduced and the PSF shrinks. At the same time 
(λ = 100 Å), lateral peaks corresponding to the positions predicted by the 1st order scattering theory appear gradually. At 
even higher energies (λ = 50 Å), higher order scattering peaks appear, and in X-rays (λ = 10 Å) they become narrower 
and closely spaced. So far, the PSF has been very different from the geometrical optics predictions. However, we note 
that the peaks become closer and closer, and that their amplitude decays rapidly outside the domain of Eq. 18. Finally, at 
λ = 3 Å the peaks are so close to blend together and in hard X-rays (λ = 1 Å) the PSF computed using the Fresnel 
diffraction merges with Eq. 18: as expected, the geometrical optics results are found applying physical optics in the limit 
λ → 0. But we can also conclude that: 

1. The geometric/scattering treatment depends on λ and could not be established a priori. In particular, the 
smooth surface limit for this case is at λ = 71 Å, just before the appearance of the 2nd order peaks. However, 
after this limit the geometrical optics methods are not applicable. 

2. The transition from 1st order scattering (λ = 100 Å) to geometrical optics (λ = 1 Å) is extremely slow. We have 
a confirmation that we cannot set a sudden boundary between geometric and wave treatment of surface defect. 

3. What we call “geometric optics” is nothing but the superposition of high order diffraction peaks, which 
become a continuum when their spacing becomes smaller than the spatial resolution of the detector, or 
smoothed out by the finite monochromation of the radiation in use.  

4. Also geometrical optics results can be simulated via Fresnel diffraction, just like the aperture and surface 
diffraction. No frontiers need to be set between spatial frequencies, but surface defects can be treated self-
consistently applying the Fresnel diffraction approach. 
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Fig. 7: the PSF of a grazing incidence (α0 = 0.43 deg) parabolic mirror with a sinusoidal perturbation (0.1 µm amplitude, 10 mm 
period) superimposed, for decreasing values of λ from near UV to X-rays. 
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