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ABSTRACT

Context. Optical modules for X-ray telescopes comprise several double-reflection mirrors operating in grazing incidence. The con-
centration power of an optical module, which determines primarily the telescope’s sensitivity, is in general expressed by its on-axis
effective area as a function of the X-ray energy. Nevertheless, the effective area of X-ray mirrors in general decreases as the source
moves off-axis, with a consequent loss of sensitivity. To make matters worse, the dense nesting of mirror shells in an optical module
results in a mutual obstruction of their aperture when an astronomical source is off-axis, with a further effective area reduction.
Aims. To ensure the performance of X-ray optics for new X-ray telescopes (like NuSTAR, NHXM, ASTRO-H, IXO), their design
entails a detailed computation of the effective area over all the telescope’s field of view. While the effective area of an X-ray mirror is
easy to predict on-axis, the same task becomes more difficult for a source off-axis. It is therefore important to develop an appropriate
formalism to reliably compute the off-axis effective area of a Wolter-I mirror, including the effect of obstructions.
Methods. Most of collecting area simulation for X-ray optical modules has been so far performed along with numerical codes, involv-
ing ray-tracing routines, very effective but in general complex, difficult to handle, time consuming and affected by statistical errors.
In contrast, in a previous paper we approached this problem from an analytical viewpoint, to the end of simplifying and speeding up
the prediction of the off-axis effective area of unobstructed X-ray mirrors with any reflective coating, including multilayers.
Results. In this work we extend the analytical results obtained: we show that the analytical formula for the off-axis effective area
can be inverted, and we expose in detail a novel analytical treatment of mutual shell obstruction in densely nested mirror assemblies,
which reduces the off-axis effective area computation to a simple integration. The results are in excellent agreement with the findings
of a detailed ray-tracing routine.
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1. Introduction

Optical modules for X-ray telescopes consist of a number of
grazing incidence mirror shells with a common axis and fo-
cus. In a widespread design, the Wolter’s, the mirrors com-
prise two consecutive segments, a paraboloid and a hyperboloid,
in order to concentrate X-rays by means of a double reflec-
tion. The two reflections occur at the same incidence angle for
X-rays coming from an on-axis source at astronomical distance
(Van Speybroeck & Chase 1972). The optical design of the mod-
ule is primarily dependent on the required effective area, which
determines the telescope’s sensitivity.

The most representative indicator of the concentration power
of an optical module is assumed in general to be the effective
area on-axis. However, the effective area in general decreases
as the X-ray source moves off-axis. This in turn diminishes the
telescope’s sensitivity, hence may represent a severe limitation
to its field of view. For this reason, the prediction of the on- and
off-axis effective area modules is a very important task in the
development of new X-ray telescopes such as NuSTAR (Hailey
et al. 2010), NHXM (Basso et al. 2010), ASTRO-H (Kunieda
et al. 2010), and IXO (Bookbinder 2010).

While the effective area on-axis is in general easy to cal-
culate for a typical Wolter-I mirror module configuration, the
computation becomes more difficult off-axis, because of the

variable incidence angles over the two reflecting surfaces and
the variable fraction of singly-reflected X-rays that are not fo-
cused and contribute to the stray light (see e.g., Cusumano et al.
2007). To make things worse, the assembled mirrors can shade
each other if they are not spaced enough, which contributes
to an even steeper decrease in the collecting area off-axis. A
widespread method for performing the calculation, accounting
for all these factors, has made use of accurate ray-tracing rou-
tines (see, e.g., Mangus & Underwood 1969; Zhao et al. 2004),
which reconstruct the paths of a selection of X-rays impinging
a mirror module. These numerical codes are in general accurate,
because they simulate the real incidence of rays on the optical
system. However, they are complex and time consuming, espe-
cially whenever the simulation includes wide-band multilayer
coatings to extend the reflectivity beyond 10 keV (Joensen et al.
1995; Tawara et al. 1998). The reason is that the multilayer re-
flectivity computation, which has to be performed for every ray
traced, is a complex procedure especially for wideband multi-
layers, which comprise many (∼200) couples of layers.

For this reason, although the ray-tracing approach should
not be disregarded, it is interesting to derive analytical formu-
lae for the effective area off-axis. In attempting to achieve this,
Van Speybroeck & Chase (1972) discovered, by analyzing the
results of ray-tracing simulations, that the geometric collecting
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area of a Wolter-I mirror decreases with the off-axis angle θ of
the source, according to the formula

A∞(θ) = A∞(0)
(
1 − 2θ

3α0

)
, (1)

where A∞(0) is the on-axis geometric area and α0 is the inci-
dence angle for an astronomical source on-axis.

More recently, a semi-analytical method for computing the
off-axis effective area has been applied to solve the problem
of optimizing multilayer recipes to the telescope’s field of view
(Mao et al. 1999; Mao et al. 2000; Madsen et al. 2009). In this
approach, the effective area is computed by integrating the mir-
ror reflectivity over the incidence angles, after weighting it over
an appropriate function, Winc, derived from a ray-tracing.

In a previous paper (Spiga et al. 2009), we already derived
a completely analytical method for computing the off-axis effec-
tive area of a Wolter-I mirror with any reflective coating. In a
subsequent article (Spiga & Cotroneo 2010), we developed this
formalism, deriving the analytical expression of the aforemen-
tioned Winc function, which represents the distribution of the off-
axis effective area over the incidence angles of rays, and we also
used it to face the problem of multilayer optimization (Cotroneo
et al. 2010). The results were accurately verified as well, by com-
parison with the outcomes of a ray-tracing program. However,
in these previous works, we did not consider the mutual shad-
ing (also known as vignetting) of mirrors, which may occur in
mirror modules when shells are densely nested together. While
in general the mirror module is designed to avoid any vignetting
on-axis, the problem may arise for sources off-axis and cause a
further loss of effective area. Consequently, the results could be
applied only to single mirror shells, or to mirror assemblies for
which the mutual obstruction is known to be negligible over all
the field of view.

In this work, we overcome these limitations and extend the
developed formalism to the general case of obstructed Wolter-I
mirrors in X-ray optical modules. We still assume that the mir-
ror profile can be approximated by a double cone as far as the
sole effective area is concerned, a condition in general fulfilled
by optics with large f -numbers. In Sect. 2, we briefly review
the results obtained for unobstructed single mirror shells, and in
addition we show how the analytical formalism can be inverted
to derive the product of the two reflectivities from the desired
effective area variation with the off-axis angle. In Sect. 3, we
describe the geometrical parameters driving the nested mirror
obstructions, derive the expression of the vignetting coefficients,
and obtain an analytical formula for the off-axis effective area of
an obstructed mirror (Eq. (38)). We then derive in Sect. 4 some
analytical expressions for the obstructed geometric area, and we
apply the results to the geometrical optimization of the module.
In Sect. 5, we prove the validity of the analytical formulae by
means of a ray-tracing routine. The results are briefly summa-
rized in Sect. 6.

2. Analytical formulae for unobstructed Wolter-I
mirrors

We consider a Wolter-I mirror shell (Fig. 1) with focal length f .
We denote with R0 the radius of the reflective surface at the inter-
section plane and with α0 the incidence angle at the intersection
plane for an astronomical source on-axis. They are related by the
well-known relation

R0 = f tan (4α0) . (2)

Fig. 1. Sketch of a grazing-incidence Wolter-I mirror shell with an off-
axis X-ray source. We also show a ray direction vector before reflec-
tion (k0), after the first reflection (k1), and after two reflections (k2).

We hereafter assume that all incidence angles are shallow, there-
fore tan(4α0) ≈ 4α0. The optical axis of the mirror is oriented
in the z-axis direction. We define L1 and L2 to be the lengths
of the parabolic and hyperbolic segments (hereafter named pri-
mary and secondary), which are supposed to be undeformed and
very smooth. We denote with RM and Rm the mirror radii at the
entrance and exit pupil, respectively. We define rλ(α) to be the
coating reflectivity for a generic incidence angle α, at the X-ray
wavelength λ, and assume that the geometric optics can be ap-
plied, i.e., that λ is small enough to avoid aperture diffraction
effects but large enough for the scattering due to surface rough-
ness to be negligible (Raimondi & Spiga 2010). The source is
assumed to be at a finite, although very large, distance D & L1,2.
Finally, θ ≥ 0 denotes the off-axis angle, i.e., the angle formed
by the source direction with the optical axis. The x-axis of this
reference frame is oriented such that the source lies in the xz
plane, at x > 0 and z > 0.

2.1. A review of previous results

We briefly review the results about the computation of the off-
axis effective area of unobstructed Wolter-I mirror shells, derived
in previous works (Spiga et al. 2009; Spiga & Cotroneo 2010).

1. Owing to the shallow incidence angles, the double cone ap-
proximation is in general applicable to compute the effective
area of Wolter-I mirrors. The error in the effective area esti-
mation, by replacing a Wolter-I profile with a double cone,
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is on the order of L/ f or smaller, i.e., a few percent in real
cases.

2. For a source off-axis, the incidence angles on the primary
and secondary segment, α1 and α2, essentially depend on
the polar angles ϕ1 and ϕ2 of the points where the ray is
reflected (Fig. 1). As long as θ is small, ϕ1 ≈ ϕ2. We thus de-
note their nearly-common value with ϕ. If the polar angle ϕ
is measured from the x-axis, α1 and α2 have the expressions

α1 = α0 + δ − θ cosϕ, (3)
α2 = α0 − δ + θ cosϕ, (4)

where δ = R0/D is the X-ray semi-divergence due to the
distance of the source: for an astronomical source, δ ( 0.
Equations (3) and (4) are valid if α1 ≥ 0, α2 ≥ 0. We note
that

α1 + α2 = 2α0. (5)

3. The geometric ratio of rays that undergo the double reflection
to those impinging the primary segment is expressed by the
vignetting factor

V(ϕ) =
L2α2

L1α1
, (6)

with the constraint that 0 < V(ϕ) < 1.
4. Using Eq. (6), it is easy to derive an integral formula for the

effective area of the mirror shell

AD(λ, θ) = 2R0

∫ π

0
(Lα)min rλ (α1) rλ (α2) dϕ, (7)

where

(Lα)min = max
{
0,min

[
L1α1(ϕ), L2α2(ϕ)

]}
. (8)

5. In the frequent case L1 = L2 (= L), Eq. (7) reduces to

AD(λ, θ) = 2R0L
∫ π

0
αmin rλ (α1) rλ (α2) dϕ, (9)

where αmin = min[α1(ϕ),α2(ϕ)] if positive, and zero other-
wise. The expression of the αmin angle can be written in a
compact form

αmin = max (0, α0 − |δ − θ cosϕ|) , (10)

6. In the ideal case of a perfectly-reflecting mirror, i.e., setting
r = 1 for any α and λ, the integral in Eq. (9) can be solved
explicitly. For instance, if δ = 0 and θ = 0, we obtain

A∞(0) = 2πR0Lα0, (11)

whereas, if δ = 0 and 0 < θ < α0,

A∞(θ) = A∞(0)
(
1 − 2θ
πα0

)
, (12)

where – and heretofore – we drop the dependence of the A’s
on λ to denote the geometric mirror areas. Equation (12),
after approximating π ≈ 3, becomes Eq. (1), the expression
found by Van Speybroeck & Chase (1972). For θ > α0, the
geometric area has the more complicated expression

A∞(θ) = A∞(0)


1 −

2
π



θ

α0
−
√
θ2

α2
0

− 1 + arccos
α0

θ





 .

(13)

7. If δ > 0, more analytical expressions can be obtained by
solving the integral in Eq. (9). The predictions are in very
good agreement with the findings of detailed ray-tracing rou-
tines. For more details, we refer to Spiga et al. (2009).

8. If δ = 0 and 0 < θ < α0, we obtain an alternative form of
Eq. (9), by changing the integration variable from ϕ to α1,

A∞(λ, θ) = 4R0L
∫ α0

α0−θ

α1 rλ (α1) rλ (α2)
√
θ2 − (α0 − α1)2

dα1. (14)

This equation can be used to derive the effective area as a
function of θ, at a fixed λ.

2.2. Inverse computation: from A∞(λ, θ) to the mirror
reflectivity

As a further development of the equations reported in the pre-
vious section for unobstructed mirrors, we hereafter provide the
inverse formula of Eq. (14). For a given λ, from the effective area
variation with θ in [0,α0], for δ = 0, we derive the product of the
reflectivities of the two segments

Tλ (α1) def
= rλ (α1) rλ (α2) , (15)

where α2 = 2α0 − α1 (Eq. (5)). Owing to the symmetry of α1
and α2 with respect to the y-axis when δ = 0, it is sufficient to
compute Tλ(α1) for 0 < α1 < α0. To this end, we define Eλ(θ) to
be the ratio of the effective area to the on-axis geometric area

Eλ(θ) =
A∞(λ, θ)
A∞(0)

, (16)

and then it is easy to demonstrate (see Appendix A) that the
Tλ(α1) function, for α1 ∈ (0,α0), can be computed from the in-
tegral equation

Tλ (α1) =
α0

α1

∫ π/2

0
sin t
[

d
dθ

(θEλ(θ))
]

θ=θ(t)
dt, (17)

where the expression in the [ ] brackets, after computing the
derivative, is to be evaluated at

θ(t) = (α0 − α1) sin t, (18)

where 0 ≤ t ≤ π/2 is a dummy integration variable. The con-
dition 0 < α1 < α0 then implies that 0 < θ < α0: in other
words, the Eλ(θ) function has to be known in the entire interval
(0,α0). By computing the integral in Eq. (17) for any normalized
effective area function Eλ(θ), one obtains the corresponding re-
flectivity product at λ (Eq. (15)), for α1 taking on values in the
same interval.

As a first example, we put in adimensional form the geomet-
ric vignetting for a source at infinity, Eq. (12),

E(θ) = 1 − 2θ
πα0
, (19)

and substitute this into Eq. (17). We obtain

Tλ (α1) =
α0

α1

∫ π/2

0

(
sin t − 4 (α0 − α1)

πα0
sin2 t

)
dt, (20)

which can be immediately solved, yielding

Tλ (α1) = 1. (21)

This means that rλ(α) = 1 for any incidence angle and wave-
length, as expected.
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Fig. 2. The product of the reflectivities of the two segments of a Wolter-I
shell with α0 = 0.212 deg, at 30 keV. The reflective surface is a mul-
tilayer coating, a Pt/C graded stack with 200 couples of layers. The d-
spacing in the multilayer follows the power-law model d(k) = a (b+k)−c

(Joensen et al. 1995), with a = 77.4 Å, b = −0.94, c = 0.223, a Pt thick-
ness ratio Γ = 0.42, and a 4 Å roughness rms. The solid line is directly
computed from the multilayer structure, whilst the dots are the result of
the inverse computation from the effective area in Fig. 3.

Fig. 3. The effective area at 30 keV (λ = 0.4 Å) of a Wolter-I mirror
shell with R0 = 148.5 mm, L = 300 mm, f = 10 m, α0 = 0.212 deg,
and a reflectivity product as shown in Fig. 2 (solid line). The effective
area was used to re-derive the Tλ(α1) function (Fig. 2, dots).

As a second example, we show the computation of a reflec-
tivity product from the effective area of a mirror shell with a mul-
tilayer coating. The product of the two reflectivities at 30 keV,
directly computed from the multilayer recipe, is shown in Fig. 2,
as a function of α1. The effective area of the mirror shell at the
same energy (Fig. 3) was computed in (0,α0), using Eq. (14).
Finally, we used Eq. (17) to re-derive the Tλ(α1) function from
the effective area curve. The result of the inverse computation
(Fig. 2, dots) closely matches the original reflectance product
(Fig. 2, line).

3. Obstructions in nested mirror modules

We now deal with a quantification of the obstructions that re-
duce the off-axis effective area of a mirror shell, when nested
in a mirror module. Even if this effect is essentially a geometric

Fig. 4. Obstruction in an assembly of mirror shells. Rays impinging a
mirror shell can be blocked by the adjacent shell with smaller diameter
in only three ways, as listed in the text. The impact points are high-
lighted. Other mirror shells are not shown. The obscured regions of the
primary mirror are indicated in gray: angles and the mirror spacings are
greatly exaggerated.

shadowing, the effective area reduction depends on λ, because
the incidence angles, and consequently the mirror reflectivity
rλ(α), vary over the mirror surface when the source is off-axis.
This is especially true when multilayer coatings, which exhibit a
complicated rλ(α) function, are adopted. A reduction of the ef-
fective area is then relevant for the X-ray wavelengths that were
reflected at the obstructed regions.

The clear aperture of a mirror shell can be obstructed by sev-
eral factors: the dense packing of shells, the structures for me-
chanical support of mirrors, and the presence of pre-collimators
designed to reduce the stray light. However, we hereafter limit
the discussion to the first point, i.e., the mutual obstruction of
nested mirror shells, assuming that they are all co-axial, co-focal,
and all have the same intersection plane at z = 0 (Fig. 4).

3.1. Obstruction parameters

We now draw our attention to a particular mirror shell in the
mirror module (Fig. 4), and adopt the same notation presented
in Sect. 2. The obstruction of this shell (which we refer to as
a reflective shell) can be assumed to be caused solely by the
shadow cast by the adjacent shell with smaller radius, which
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Fig. 5. Geometrical meaning of the obstruction parameters, Φ,Ψ, and Σ,
for a pair of Wolter-I nested shells.

we refer to as blocking shell. The radius of its outer (i.e., non-
reflective) surface at z = 0 is denoted with R∗0, which is forcedly
smaller than R0. We then define R∗M, R∗m, L∗1, and L∗2 to be respec-
tively the maximum radius, the minimum radius, the primary
segment length, and the secondary length of the outer surface
of the blocking shell. We admit that, in general, L1 ! L∗1 and
L2 ! L∗2. If L∗1 = L∗2, we denote their common value with L∗.

A simple geometrical construction shows (Fig. 4) that an ob-
struction of the reflective shell can occur in three ways:

1. If rays intersect the blocking shell’s primary segment before
impinging the reflective shell;

2. If, after the first reflection, rays impact onto the outer surface
of the blocking shell’s primary segment;

3. If, after the second reflection, rays are blocked by the outer
surface of the blocking shell’s secondary segment.

The obstruction amount depends on the closeness of the two mir-
rors. This is often expressed along with FF, the filling factor

FF =
R∗M
R0
· (22)

The configuration with FF = 1 causes each shell to exactly fit
the clear area section of the adjacent shell, hence it maximizes
the effective area on-axis at the expense of the off-axis area. If
FF > 1, the mirror assembly is self-obstructed even on-axis. For
this reason and to enlarge the field of view of the optics, solutions
with FF < 1 are in general envisaged.

Nevertheless, it is convenient to adopt other parameters in
the estimation of obstructions. The first of these is

Φ =
R0 − R∗M

L∗1
+ α0, (23)

which represents the maximum angle visible from the reflective
shell at the intersection plane (see Fig. 5), through the entrance
pupil. Clearly,Φ > α0 whenever FF < 1, andΦ < α0 if FF > 1.
As we later see, theΦ parameter drives the obstruction of the first
kind, i.e., at the entrance pupil.

The obstruction of the second kind, i.e., at the intersection
plane, is chiefly determined by another parameter,

Ψ =
R0 − R∗0

L1
, (24)

which denotes the clear angular aperture at the intersection
plane, as seen from the maximum diameter of the reflective mir-
ror shell (see Fig. 5). The third obstruction parameter, which
drives the third species of obstruction, is

Σ =
R0 − R∗m

L∗2
− 3α0, (25)

which represents the angular aperture visible from the reflective
shell at the intersection plane (see Fig. 5), through the exit pupil.
The importance of these angles becomes clearer in Sect. 3.3,
when we derive the general formula for the obstructed mirror
effective area (Eq. (38)), which depends on Φ, Ψ, and Σ as pa-
rameters.

The obstruction parameters can be related to each other

Φ =
L1

L∗1
Ψ +

(
α0 − α∗0

)
, (26)

Σ =
L1

L∗2
Ψ − 3

(
α0 − α∗0

)
, (27)

where α∗0 is the on-axis incidence angle on the blocking shell.
Using Eq. (2), these relations can also be written as

Φ = L1Ψ

(
1
L∗1
+

1
4 f

)
, (28)

Σ = L1Ψ

(
1
L∗2
− 3

4 f

)
· (29)

From Eqs. (28) and (29) it follows, in particular, that

– if L∗1 ≤ L1 ≤ L∗2, then Σ < Ψ < Φ;
– if L∗1 = L1 = L∗2 and f & L1, then Σ ≈ Ψ ≈ Φ.

3.2. Vignetting coefficients

We now provide analytical expressions for the obstructions
caused by the mirror nesting. To this end, we introduce a vi-
gnetting coefficient, Vn(ϕ), with n = 1, 2, 3, for every kind of
obstruction as listed in Sect. 3.1. For an infinitesimal mirror sec-
tor located at the polar angle ϕ, the nth vignetting coefficient is
defined as the fraction of primary segment’s length left clear by
the nth obstruction. This definition is analogous to that of V(ϕ),
the self-vignetting factor for double reflection (Eq. (6)), which
we already treated in detail (Spiga et al. 2009). We then have, in
addition to V(ϕ), three vignetting coefficients:

– V1(ϕ), due to the shadow cast by the blocking shell’s primary
segment before the first reflection;

– V2(ϕ), due to the shadow cast by the blocking shell’s primary
segment after the first reflection;

– V3(ϕ), due to the shadow cast by the blocking shell’s sec-
ondary segment after the second reflection.

Firstly, we consider all vignetting factors to be independent of
each other: the respective obstructed (i.e., lost) fractions of pri-
mary mirror length are denoted with Qn = 1 − Vn.
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Fig. 6. Vignetting coefficients as a function of the polar angle for
L2 = 310 mm, L1 = 300 mm, L∗2 = 290 mm, L∗1 = 280 mm, α0 = 0.3 deg,
δ = 0 deg, θ = 0.25 deg, Φ = 0.43 deg, Ψ = 0.4 deg, and Σ = 0.408 deg.
We also plot V , the vignetting factor for double reflection (Eq. (6)).

Fig. 7. Vignetting coefficients as a function of the polar angle for the
same configuration as in Fig. 6, but this time the source is at a finite
distance (D = 127 m, δ = 0.095 deg). We note that the obstruction at
the exit pupil is less severe than for a source at infinity.

As we anticipated in the previous section, it is the Φ, Ψ,
and Σ parameters that primarily determine the vignetting coef-
ficients. More precisely, they are functions of the incidence an-
gles α1 and α2, and they can be computed via the following for-
mulae

V1 (α1) = 1 +
L∗1 (Φ − α1)

L1α1
, (30)

V2 (α1) =
Ψ

α1
, (31)

V3 (α1) = 1 +
L∗2 (Σ − α2)

L1α1
, (32)

where α1 + α2 = 2α0, and with the usual constraint 0 ≤ Vn ≤ 1
for each n, otherwise we set Vn to 0 or 1, respectively. The deriva-
tion of Eqs. (30) to (32) is not difficult, but quite lengthy, so it
has been postponed to Appendix B.

The dependence of the coefficients on ϕ is obtained by sub-
stituting the expressions of α1 and α2 (Eqs. (3) and (4)). We note
that the obstructed region of the primary segment in the first and
third kind of vignetting is located near the intersection plane,
whereas V2 results from an obscuration of the primary mirror
near z = +L1 (see Fig. 4), in a precisely similar way to V .

Example plots of V1, V2, V3, and V , as functions of ϕ, are
drawn in Figs. 6 and 7. The adopted values correspond to the

case of two mirror shells with R0 = 210 mm, R∗0 = 207.9 mm,
and f = 10 m: the other parameter values are reported in the
figure caption, including the lengths of the mirrors, which have
been chosen to fulfill the relations L∗1 < L∗2 < L1 < L2. As we
later see (Sect. 4.2), this choice is not accidental: it represents a
compromise to minimize all obstructions.

Equations (30) to (32) and Figs. 6, and 7 show that:

– if the conditions α1 < Φ, α1 < Ψ, and α2 < Σ are fulfilled at
a given ϕ, there is no obstruction at that polar angle;

– if α1 > Ψ, but V < V2 as in Figs. 6 and 7, the obstruction
at the intersection plane is ineffective, because all rays that
were blocked would have missed the secondary segment;

– the obstructions related to V1 and V2 are maximum at polar
angles close to π;

– the effect of V3 is larger at ϕ ≈ 0, where α1 is shallower
and α2 is larger;

– with the source at infinity, the obstruction related to V3 can be
very large, especially near ϕ ≈ 0. In contrast, the effect of V3
is mitigated if the source is at a finite distance, because α2
becomes smaller;

– if L1 ≥ L∗1, then V1 > V2 for all ϕ;
– if L1 = L∗1 and f & L1, then Φ ≈ Ψ (Eq. (28)) and also

V1 ≈ V2 for all ϕ.

3.3. General formula for the effective area of obstructed
mirror shells

We already pointed out that the obstructions described by V
and V2 are located close to the maximum diameter of a Wolter-I
mirror shell, whereas the ones related to V1 and V3 concern
mainly the region close to its intersection plane. Therefore, V
and V2 are in competition for the obstruction near z = +L1,
while V1 and V3 do the same near z = 0 (Fig. 4). The total ob-
struction at the generic polar angle ϕ is then

Qtot = max (Q,Q2, 0) +max (Q1,Q3, 0) , (33)

where the “0” value has been added to avoid negative obstruc-
tions. The corresponding total vignetting factor is 1 − Qtot, i.e.,

Vtot = min (V,V2, 1) −max (1 − V1, 1 − V3, 0) . (34)

Using the expressions of V (Eq. (6)) and V2 (Eq. (31)), we can
write the first term of Eq. (34) as

min (V,V2, 1) = min
(

L2α2

L1α1
,
Ψ

α1
, 1
)
. (35)

Using Eqs. (30) and (32), the second term reads

max (1 − V1, 1 − V3, 0) = max
(

L∗1 (α1 −Φ)

L1α1
,

L∗2 (α2 − Σ)

L1α1
, 0
)
.

(36)

If positive and not larger than 1, the total vignetting factor
(Eq. (34)), can be used to compute the obstructed mirror effec-
tive area. An infinitesimal sector of the primary mirror with po-
lar aperture ∆ϕ, as seen from the off-axis source, has a vignetted
geometric area R0VtotL1α1∆ϕ, hence the total effective area is

AD(λ, θ) = 2R0

∫ π

0
VtotL1α1 rλ (α1) rλ (α2) dϕ. (37)
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By substituting Eq. (34) into Eq. (37), it is straightforward to
derive the final expression for the off-axis effective area of the
obstructed mirror shell

AD(λ, θ) = 2R0

∫ π

0
[(Lα)min − Qmax]≥0 rλ (α1) rλ (α2) dϕ, (38)

where

(Lα)min = min (L1α1, L2α2, L1Ψ) , (39)

Qmax = max
[
L∗1 (α1 −Φ) , L∗2 (α2 − Σ) , 0

]
, (40)

provided that α1 ≥ 0, α2 ≥ 0, as usual. The [ ]≥0 brackets in
Eq. (38) mean that the enclosed expression (Lα)min − Qmax, if
negative, must be set to zero. For this reason, the integration can-
not be carried out independently for the two terms. Moreover,
because of the presence of Ψ in Eq. (39) and the different values
of Φ and Σ in Eq. (40), the computation is asymmetric with re-
spect to the y-axis, also when δ = 0. Therefore, the integral in
Eq. (38) is not equivalent to twice the same integral over [0, π/2],
unless all these conditions are fulfilled (as in Sect. 4.1): i) δ = 0,
ii) Φ ( Σ, and iii) there is no vignetting of the second kind.

3.4. Conditions for obstruction-free mirror shells

We now discuss the conditions for the mirror shell to be
obstruction-free. It can be seen, from Eqs. (39) and (40), that
there is no obstruction if, and only if, for all ϕ



α1 < Φ,
α2 < Σ,
min (L1α1, L2α2) < L1Ψ.

(41)

If these inequalities are fulfilled, Eq. (38) correctly reduces to
Eq. (7). The first two conditions are simply met if the maximum
values of α1 and α2 do not exceed Φ and Σ, respectively. The
third condition requires that either α1 < Ψ or α2 <

L1
L2
Ψ, which

in turn are equivalent1 to

α1 + α2 <

(
1 +

L1

L2

)
Ψ, (42)

i.e., using Eq. (5),

2α0L2

L1 + L2
< Ψ, (43)

which reduces to α0 < Ψ if L1 = L2. The definition of Ψ then
allows us to write Eq. (43) as

α0
2L1L2

L1 + L2
< R0 − R∗0. (44)

This result has an immediate geometric interpretation, by noting
that left-hand of Eq. (44) is exactly the maximum possible dis-
tance from the reflective shell of a ray reflected twice (Fig. 8).
All other rays undergoing a double reflection cannot exceed this
distance, which therefore represents the minimum separation for
the two shells at z = 0.

1 From Eq. (42), it might alternatively follow that α1 <
L1
L2
Ψ or α2 < Ψ.

However, if L1 < L2 this would still imply that α1 < Ψ, whereas if
L1 > L2 we would still have α2 < Ψ <

L1
L2
Ψ. In both cases, Eq. (42)

remains valid.

Fig. 8. There is no vignetting at the intersection plane if the distance of
the ray reflected at the maximum and the minimum diameter is smaller
than the spacing of the two mirror shells.

Finally, we define L̃ to be the equivalent length of the mirror

2
L̃
=

1
L1
+

1
L2
, (45)

and using Eqs. (3) and (4), we can express the obstruction avoid-
ance conditions as

α0 + δ + θ < Φ, (46)
α0 − δ + θ < Σ, (47)
α0L̃ < R0 − R∗0. (48)

We note that if L1 = L2 = L, then also L̃ = L, and that the last
condition solely depends on the mirror pair geometry, not on the
off-axis angle.

4. Some applications

4.1. Analytical expressions for the geometric area

As a first application, we derive some expressions for the ge-
ometric area (i.e., in the ideal case rλ(α) = 1 for all α) of an
obstructed mirror as a function of θ. For simplicity, we only con-
sider the case that δ = 0 and L1 = L2 = L∗1 = L∗2, and we
suppose the mirror to be unobstructed on-axis, i.e., that Φ ≥ α0
(Eq. (23)). Finally, we reasonably assume that f & L, so that
Φ ≈ Ψ ≈ Σ (Sect. 3.1): consequently, Ψ ≥ α0 and there is no
vignetting at the intersection plane (as in Fig. 8). Equation (39)
then becomes, as in the unobstructed case,

(Lα)min = L ·min (α1,α2) . (49)

Adopting Φ as a unique obstruction parameter, and since
min(α1,α2) +max(α1,α2) = 2α0 (Eq. (5)), Eq. (40) turns into

Qmax ( L [2α0 −min (α1,α2) −Φ] , (50)

on the condition that both terms are non-negative. Substituting
this expression into Eq. (38) and using Eq. (10) with δ = 0, we
obtain

AD(θ) = 2R0L
∫ π

0

[
αmin − βmax

]
≥0 dϕ, (51)
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where we defined

αmin =
[
α0 − θ | cosϕ|]≥0 , (52)

βmax =
[
α0 + θ | cosϕ| −Φ]≥0 , (53)

and where the [ ]≥0 brackets have the same meaning as those
appearing in Eq. (38).

We firstly consider the case α0 < Φ < 2α0, which implies
that Φ − α0 < α0. As long as θ < Φ − α0, αmin > 0 but βmax = 0
for all ϕ, i.e., the mirror is not obstructed and Eq. (12) remains
valid.

We now increase θ. Since Φ−α0 < Φ/2 < α0 by hypothesis,
we are allowed to consider the case Φ − α0 < θ < Φ/2. For
all ϕ, we still have αmin > 0, but this time βmax is positive for
θ | cosϕ| > Φ − α0: for these values of ϕ, the mirror starts to be
obstructed. Then Eq. (51) changes into

A∞(θ) = 4R0L
∫ π/2

arccos Φ−α0
θ

(α0 − θ cosϕ) dϕ

+4R0L
∫ arccos Φ−α0

θ

0
(Φ − 2θ cosϕ) dϕ, (54)

where the two terms are the unobstructed and the obstructed part
of the area, respectively. We note that the two integrands are pos-
itive in the respective integration ranges, hence the integration
can be carried out and we obtain

A∞(θ)
A∞(0)

= 1 − 2θ
πα0

[
1 + S

(
Φ − α0

θ

)]
, (55)

where we normalized the result to A∞(0), the on-axis geometric
area (Eq. (11)), and defined the non-negative S (x) function,

S (x) =
√

1 − x2 − x arccos x, with 0 ≤ x ≤ 1. (56)

We recognize in the two first terms of Eq. (55) the usual unob-
structed geometric area trend (Eq. (12)), whereas the term pro-
portional to the S function represents the area lost because of
the obstruction. Since S (1) = 0, Eq. (55) converges to the unob-
structed area trend at θ = Φ − α0.

We now consider the case θ > Φ/2, still for Φ < 2α0 and
δ = 0. The first term of Eq. (54) remains unchanged, even if the
integration range shrinks because of the larger values of θ. In the
second integral, indeed, we have to replace the lower integration
limit with arccos Φ2θ to keep the integrand non-negative. This in-
tegration limit also guarantees that αmin > 0 even for θ > α0.
Because of this change, the resulting expression

A∞(θ)
A∞(0)

= 1 − 2θ
πα0

[
1 + S

(
Φ − α0

θ

)
− 2 S

(
Φ

2θ

)]
, (57)

has an additional term with respect to Eq. (55).
Finally, we assume that Φ ≥ 2α0. This time α0 ≤ Φ − α0,

hence the geometric area decrease deviates from linearity (for
θ > α0) before the mirror begins to be obstructed (θ > Φ − α0).
The condition αmin > 0 then implies that the lower integra-
tion limit in the first term of Eq. (54) has to be replaced with
arccos α0

θ : consequently, αmin = 0 for 0 < ϕ < arccos α0
θ , and

the obstructed term is zero. We conclude that for Φ > 2α0 and
δ = 0 the geometric area trend equals the unobstructed one, i.e.,
Eq. (12) for θ < α0, and Eq. (13) for θ > α0. As expected, in the
limit Φ = 2α0 Eq. (57) becomes identical to Eq. (13).

As an example, we trace in Fig. 9 some geometric area
curves of a mirror shell for different values of the obstruction

Fig. 9. Normalized geometric area, A∞(θ)/A∞(0) of an obstructed mirror
shell with α0 = 0.2 deg, δ = 0, and L1 = L2, as a function of the
off-axis angle, for different values of the obstruction parameter Φ, with
Φ ≈ Ψ ≈ Σ and L = L∗. The curves are traced using the analytical
formulae reported in Sect. 4.1. The curve for the unobstructed mirror
(the solid line) is also valid for any obstructed mirror with Φ > 2α0.

parameter Φ ≥ α0, using Eqs. (12), (55), and (57) in the re-
spective intervals of validity. We also plotted the unobstructed
geometric area of the mirror (Eqs. (12) and (13)), which is also
valid for Φ > 2α0. Some curves are also validated in Sect. 5 by
means of an accurate ray-tracing computation.

4.2. Design of the mirror module

The obtained results can also be applied to the problem of de-
signing a mirror module. In general, the radius and the length of
the outermost shell of the module is assigned on the basis of the
allocable space for the optics payload. Starting from this one,
shells with decreasing radii are added, leaving a sufficient spac-
ing to minimize the mirror vignetting for off-axis angles within
the field of view of the optic. It is then convenient to reduce the
obstruction, by increasing Φ and Σ (Sect. 3.1) for every pair of
consecutive shells. For any choice of R0, R∗0, and L1, this can be
obtained by designing each mirror pair with L∗1 < L1 (Eq. (26))
and L∗2 < L1 (Eq. (27)). On the other side, mitigation of the mir-
ror self-vignetting for double reflection (Eq. (6)) requires that
L2 > L1 and L∗2 > L∗1. Hence, if we label the mirror shells with
k = 1, 2, . . . from large to small diameters, a performing module
design might consist of mirror shells with

· · · ≤ L1,k+1 ≤ L2,k+1 ≤ L1,k ≤ L2,k ≤ · · · , (58)

i.e., decreasing lengths as the diameter is reduced, and with sec-
ondary segments longer than the respective primary but shorter
than the primary of the adjacent mirror shell with larger diame-
ter. A module design with mirror lengths scaled to the diameter
has already been studied by Conconi et al. (2010) to minimize
the defocusing due to the field curvature in the WFXT telescope.

Therefore, after choosing a sequence of mirror lengths ac-
cording Eq. (58), we apply the obstruction-free conditions
(Sect. 3.4). Using Eqs. (24) and (29), we rewrite Eq. (47) as

α0,k + θ ≤
(
R0,k − R0,k+1 − τk+1

)
(

1
L2,k+1

− 3
4 f

)
, (59)
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Fig. 10. Initial positions and destinations of 40 000 rays at the entrance
pupil (points) for a Wolter-I mirror shell with L = L∗, and the angular
parameters reported in the legend (Φ ≈ Ψ ≈ Σ). The radial scale has
been expanded. Only rays that would have struck the primary mirror
were traced. The limits of the regions of different vignetting (dashes)
are computed from the vignetting coefficients.

where τk+1 is the thickness of the (k+1)th shell, in general chosen
to be proportional to the radius to maintain a constant mirror
stiffness throughout the module. If we now define 1/L2 f ,k+1 =
1/L2,k+1 − 3/4 f , we can write the last equation as

R0,k+1 + τk+1 ≤ R0,k −
(
α0,k + θ

)
L2 f ,k+1. (60)

In reality, Eq. (58) implies that Σ < Φ for all pairs of mirrors,
hence Eq. (47) also fulfills Eq. (46). The last relation to be satis-
fied is Eq. (48), which simply reads

R0,k+1 + τk+1 ≤ R0,k − α0,kL̃k+1. (61)

We then derive from Eqs. (60) and (61) the condition to be ful-
filled by the kth couple of shells, in order to avoid obstructions
up to an off-axis angle θ

R0,k+1 + τk+1 ≤ R0,k −max
[
α0,kL̃k+1,

(
α0,k + θ

)
L2 f ,k+1

]
. (62)

If mirror lengths are chosen according to Eq. (58), the last re-
lation enables the computation of the maximum possible value
of R0,k+1 from R0,k, L1,k+1, L2,k+1, and the relation τk = τ(R0,k).
When applied recursively from the outermost radius inwards, it
provides us with the optimal population of mirror shells in the
optical module.

5. Validation with ray-tracing results

We hereafter validate the formulae found in the previous sections
by comparing them with the results of a detailed ray-tracing. As
a first example, we validate the expressions of the vignetting co-
efficients (Sect. 3.2). In Fig. 10, we show the entrance section
of an obstructed Wolter-I mirror shell with R0 = 139.6 mm,
α0 = 0.2 deg, f = 10 m, and L1 = L2 = 300 mm. Rays
coming from a source at infinite distance, off-axis by an angle
θ = 0.15 deg, have been traced by simulating their reflection
on the mirror: the positions at the entrance pupil of rays that
impinged the primary segment are drawn, disregarding the oth-
ers. The points then fill the geometric section of the primary, as

Fig. 11. Comparison between some analytical curves of Fig. 9 (lines),
and the results of an accurate ray-tracing (symbols) for an obstructed
Wolter-I mirror with the same α0 = 0.2 deg, R0 = 139.6 mm, L =
L∗ = 300 mm. The outer radius of blocking shell, R∗0, takes on the
values 137.24, 138.29, and 138.55 mm, for Φ to match the values used
to draw the analytical curves (but the unobstructed one). The accord
between the formulae and the tracing is excellent within the statistical
error.

viewed from the direction of the source. The blocking shell has
the same focal and length of the reflective one, but a different
radius R∗0 = 138.3 mm.

Depending on their initial coordinates, the traced rays can
obstructed in various ways, highlighted with different colors in
Fig. 10, or reach the focal plane if they fall in the red region of
the mirror aperture. We note that, in agreement with the discus-
sion in Sect. 3.2, the obstructions at the entrance (yellow) and
the exit pupil (blue) are mainly located close to the intersection
plane, i.e., the inner contour of the colored area, while the ob-
struction after the first reflection (orange), and the vignetting for
double reflection (green), mainly occur for rays firstly reflected
at locations far from the intersection plane. Moreover, in this
case (Ψ ( Φ > α0), the obstruction after the first reflection is
ineffective because the orange region, which encloses the rays
blocked after the first reflection, is completely surrounded by
the green region, which comprises the rays that missed the sec-
ond reflection. This is in more than qualitative agreement with
the analytical tractation: in the same figure we have also traced
the analytical expressions of the vignetting coefficients (dashed
lines), after translating them into expressions of the radial co-
ordinate (see Appendix B) and projecting them at the mirror’s
entrance plane in the direction of the incident rays. We note that
the lines perfectly follow the boundaries of the vignetted regions:
the agreement shows that the expressions of the vignetting coef-
ficients (Eqs. (30) through (32)) are correct.

As a second example, we compare the analytical expressions
of the geometric area found in Sect. 4.1 with the findings of the
ray-tracing. Figure 11 reports some of the normalized geomet-
ric area curves (lines) already shown in Fig. 9, i.e., for no ob-
struction and for two values of Φ in the interval [α0, 2α0). We
have also plotted as symbols the geometric area values obtained
by applying a ray-tracing routine for a Wolter-I, reflective mir-
ror shell and a co-focal blocking shell with the same length
but variable values of R∗0 < R0. Two values of R∗0 (138.55 and
138.29 mm) were chosen to match the two values of Φ (0.2 and
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Fig. 12. Effective area of an obstructed mirror shell with R0 =
148.5 mm, f = 10 m, α0 = 0.212 deg, L = L∗ = 300 mm, and the
X-ray source at infinite distance, 6 arcmin off-axis. The curves are com-
puted for three different values of R∗0. The reflective shell has a Pt/C
graded multilayer, whose d-spacing variation in depth is a power law,
d(k) = a (b + k)−c, where k = 1 . . . 200, a = 115.5 Å, b = 0.9, c = 0.27.
We moreover assumed a Pt thickness-to-d-spacing ratio Γ = 0.35, a
roughness rms σ = 4 Å, and a stack that ends with Pt on top.

0.25 deg) we used to trace the analytical curves, while the small-
est one (137.24 mm) was selected to return Φ = 0.45 deg, i.e., a
value larger than 2α0.

Inspection of Fig. 11 shows that the findings of the two
methods are in excellent agreement, within the error bars of the
ray-tracing. On the other hand, the ray-tracing routine used is
a quite complex code, and the relative computation required a
few hours time to reach a few percent accuracy, whilst the ana-
lytical curves can be traced immediately and without being af-
fected by statistical errors. We also note that the results of the
ray-tracing for Φ = 0.45 deg are perfectly reproduced by the
unobstructed mirror analytical curve, in agreement with the con-
clusion in Sect. 4.1 that there is no obstruction at any off-axis
angle if Φ > 2α0. This happens because, with such a loose mir-
ror nesting, θ must be larger than α0 for the mirror to start be-
ing obstructed. In these conditions, the obstruction is ineffective
because it is completely superseded at all polar angles by the
vignetting for double reflection.

Finally, we directly compare in Fig. 12 some obstructed ef-
fective area off-axis curves, as a function of the X-ray energy, as
computed from a ray-tracing and using Eq. (38). The reflective
mirror shell has a fixed radius and a graded multilayer coating
(see e.g., Joensen 1995) to enhance its reflectivity in hard X-rays
up to 50 keV and beyond. The characteristics of the reflective
shell and the description of the multilayer stack are reported in
the figure caption. The off-axis angle θ = 6 arcmin is the same
for all curves, while the outer radius of the blocking shell, R∗0,
has been varied. As expected, the effective area decreases as the
tightness of the nesting increases (i.e., as R∗0 approaches R0), and
moreover the findings of the ray-tracing (symbols) are in perfect
agreement with those of the analytical computation (lines).

We note that the high-energy part of the effective area is less
affected by obstruction effects, because it results from reflec-
tion at polar angles ϕ ≈ ±π/2, where max(α1,α2) takes on the
smallest value, i.e., α0, and the reflectivity is higher: this is also
the angular region where the obstruction is lower (see Fig. 10).

6. Conclusions

We have developed the analytical formalism for the off-axis ef-
fective area of Wolter-I mirror shells, in double cone approxima-
tion, which we began to describe in a previous paper (Spiga et al.
2009).

We have shown that the analytical expression of the effective
area off-axis can be inverted to derive the product of the reflec-
tivity of the two segments (Sect. 2.2). This might be useful to
future developments for computing a suitable multilayer recipe
to return the desired effective area trend off-axis.

We have found analytical expressions for the vignetting co-
efficients (Sect. 3.2), for the three possible sources of obstruction
in nested mirror modules, as a function of the azimuthal coordi-
nate of the mirror surface.

Using the vignetting coefficients, we have derived an integral
formula (Eq. (38)) for the obstructed effective area of a Wolter-I
X-ray mirror in double cone approximation, with any reflective
coating, including multilayers. The computation only requires
the standard routines for the reflectivity of the coating, and an
integration over the azimuthal coordinate of the mirror shell.

We have obtained analytical expressions of the obstructed
geometric area (Sect. 4.1) for the case of a source at infinite dis-
tance, and applied the result to the problem of designing an op-
tical module that does not suffer from the mutual obstructions of
mirrors (Sect. 4.2).

Finally, the results have been validated by means of a com-
parison with the findings of a detailed ray-tracing (Sect. 5).

As a final application, we note that each vignetting coeffi-
cient can be adapted to estimate the unwanted vignetting caused
by collimators aimed at reducing the stray light in mirror mod-
ules (see, e.g., Cusumano et al. 2007). For example, V1 would
quantify the vignetting of the baffle at the entrance pupil, if R∗M
is interpreted as the outer radius of the collimator ring and L∗1 as
its distance from the intersection plane. With analogous substi-
tutions, V3 would represent the vignetting of a baffle located at
the exit pupil, and V2 would express the vignetting of the baffle
at the intersection plane, even though this kind of baffle can be
designed to avoid any obstruction of focused rays (Sect. 3.4).

Acknowledgements. This research is funded by ASI (Italian Space Agency, con-
tract I/069/09/0). V. Cotroneo (Harvard-Smithsonian CfA, Boston, USA) is ac-
knowledged for useful discussions and paper editing.

Appendix A: Inversion of the effective area integral

We hereafter report the derivation of the inverse integral equa-
tion (Eq. (17)), which allows us to derive the reflectivity product
from the off-axis effective area (Sect. 2.2). We start from the ex-
pression of the unobstructed effective area for L1 = L2, δ = 0,
and 0 < θ ≤ α0 (Eq. (14)), which we rewrite in terms of the
adimensional ratio Eλ(θ) (Eq. (16)),

Eλ(θ) =
2
πα0

∫ α0

α0−θ

α1 rλ (α1) rλ (α2)
√
θ2 − (α0 − α1)2

dα1, (A.1)

where 0 < θ ≤ α0. By setting the positive variable ω = α0 − α1,
the integral becomes

Eλ(θ) =
2
πα0

∫ θ

0

(α0 − ω) Tλ(ω)√
θ2 − ω2

dω. (A.2)
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We now set Kλ(ω) = ω2(α0 − ω)Tλ(ω), u = 1/ω and w = 1/θ.
Equation (A.2) can be rewritten as

2πα0
Eλ(w)
w
= 4
∫ +∞

w

uKλ(u)√
u2 − w2

du. (A.3)

The right-hand side of Eq. (A.3) is the well-known Abel integral.
It can be thereby solved for Kλ (see e.g., Stover 1995)

Kλ(u) = −α0

∫ +∞

u

1√
w2 − u2

d
dw

(
Eλ(w)
w

)
dw. (A.4)

Then, restoring the T function and the θ and ω variables, we
obtain

Tλ(ω) =
α0

ω (α0 − ω)

∫ ω

0

θ√
ω2 − θ2

d
dθ

[θEλ(θ)] dθ. (A.5)

Finally, we substituteω = α0−α1 in Eq. (A.5) with 0 ≤ α1 < α0,
and change the integration variable from θ to t, where θ = (α0 −
α1) sin t. Hence, we obtain the final result

Tλ (α1) =
α0

α1

∫ π/2

0
sin t

[
d
dθ

(θEλ(θ))
]

θ=θ(t)
dt, (A.6)

where the [ ] brackets mean that the enclosed expression has to
be evaluated at (α0 − α1) sin t. We have so obtained Eq. (17).

Appendix B: Derivation of the vignetting
coefficients

We hereafter report the detailed derivation of the vignetting co-
efficients (Sect. 3.2). The geometry of mirror shell obstructions
and the meaning of symbols are explained in Figs. 1, 4, and 5.

B.1. Vignetting at the entrance pupil, V1

This obstruction is caused by the shadow cast by the primary
segment of the blocking shell onto the primary segment of the
reflective shell. For this to occur, the shadow of the edge of the
blocking shell at r0 = (R∗M cosϕ0,R∗M sin ϕ0, L∗1) has to inter-
sect the reflective shell at some r1 = (r1 cosϕ1, r1 sinϕ1, Z1),
with 0 < Z1 < L1. The shaded part of the mirror length is
then Z1/L1.

To find Z1(ϕ1), we consider the generic ray emerging from
the source, which is located at S = (D sin θ, 0,D cos θ), and pass-
ing by r0. Now, r1, the ray intersection point on the reflecting
primary, whose equation is

z1 =
r1 − R0

α0
, with r1 > R0, (B.1)

in conical approximation, is identified via the vector equation
(
S − r0

)
×
(
r1 − r0

)
= 0, (B.2)

where × denotes a cross product. This returns two independent
scalar equations




(
1 − L∗1

D

)
r1 cosϕ1 +

δ∗ cosϕ0−θ
α0

(r1 − R0) = R∗M cosϕ0 − L∗1θ
(
1 − L∗1

D

)
r1 sinϕ1 +

δ∗ sinϕ0
α0

(r1 − R0) = R∗M sin ϕ0,

(B.3)

where we defined δ∗ = R∗M/D to be the beam divergence at the
blocking mirror shell.

The impact position is obtained by solving the previous
equations for r1 and ϕ1. If θ = 0, the solution is expected to
be independent of ϕ0, and the first points to be shaded are near
the intersection plane, i.e., r1 ≈ R0. To treat the general case of
θ ≥ 0, we search for a perturbative solution in the approxima-
tion of small θ, so we set r1 = R0 + ξ and ϕ1 = ϕ0 + ε, with
0 < ξ . R0 and |ε| . ϕ0. By substituting in Eqs. (B.3), approx-
imating to the first order, and solving, we obtain a linear system
whose solutions are

ξ ( −Φ − (α0 + δ − θ cosϕ0)
α0 + δ∗ − θ cosϕ0

L∗1α0, (B.4)

ε (
L∗1
R0

δ∗ + Φ

(α0 + δ∗ − θ cosϕ0)
θ sin ϕ0 , (B.5)

where we have used the definition of Φ (Eq. (23)) and neglected
terms proportional to α0δ.

We note that ε is of the order of θ or less, i.e., it is negligi-
ble with respect to ϕ0 itself. We can then assume that ϕ1 ≈ ϕ0.
Moreover, we know from Sect. 2.1 also that ϕ1 ≈ ϕ2, thus we de-
note with ϕ the nearly-common value of all these polar angles.
We then rewrite Eq. (B.4), using Eq. (B.1), as

Z1(ϕ) ( −L∗1
Φ − (α0 + δ − θ cosϕ)
α0 + δ∗ − θ cosϕ

. (B.6)

Clearly, Z1 > 0 only if ξ > 0. If the spacing of the two mirrors
is small enough, we may also approximate δ∗ ≈ δ. The first vi-
gnetting factor is thereby V1 = 1− Z1

L1
, i.e., recalling the definition

of α1 (Eq. (3)),

V1 (α1) ( 1 +
L∗1 (Φ − α1)

L1α1
, (B.7)

if positive and less than 1. We have so obtained Eq. (30). As
usual, if this expression returns a negative value at some ϕ′, then
V1(ϕ′) = 0, or, if larger than one, V1(ϕ′) = 1. If L1 = L∗1 we find
that V1 takes the simple form of

V1 (α1) ( Φ
α1
, (B.8)

where in this case we also note that, if V1 were positive and
smaller than one for all ϕ, the geometric area of the obstructed
primary segment would become

A1(θ) = 2R0L1

∫ π

0
α1V1 (α1) dϕ, (B.9)

which – as expected – returns the area of the corona delimited
by the largest radii of the two shells

A1(θ) = 2πR0L1Φ = 2πR0
(
RM − R∗M

)
, (B.10)

where we have used the relation RM ( R0 + α0L1.

B.2. Vignetting at the intersection plane, V2

In this case, vignetting occurs after the first reflection from
the primary segment of the inner shell, i.e., a point of the
blocking shell’s outer surface at z = 0, with coordinates
r0 = (R∗0 cosϕ0,R∗0 sin ϕ0, 0), may intercept a ray reflected
by the primary segment of the reflective shell at r1 =
(r1 cosϕ1, r1 sin ϕ1, Z1), with 0 < Z1 < L1. If it does, obstruc-
tion occurs at Z1(ϕ1) < z < L1. The coordinate Z1 is located via
the vector equation

k1 ×
(
r1 − r0

)
= 0, (B.11)
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where k1 is the ray direction after the first reflection. This unit
vector has the following expression2 (Spiga et al. 2009)

k1 (


−θ + (δ − 2α1) cosϕ1

(δ − 2α1) sinϕ1
−1


 . (B.12)

After some manipulation of Eq. (B.11), we obtain the two scalar
equations



(
α0 cosϕ1 + k1x

)
r1 = k1xR0 + α0R∗0 cosϕ0

(
α0 sinϕ1 + k1y

)
r1 = k1yR0 + α0R∗0 sin ϕ0,

(B.13)

and, using Eq. (B.12), we find that the solution of Eqs. (B.13)
for θ = 0 is ϕ0 = ϕ1 and

r(0)
1 = R0 +

α0

α0 + δ

(
R0 − R∗0

)
. (B.14)

Since R0 > R∗0, we have r(0)
1 > R0, hence Z(0)

1 > 0 (Eq. (B.1)).
If θ > 0, we set r1 = r(0)

1 + ξ, ϕ0 = ϕ1 + ε, and proceed as in
Sect. B.1. The solution to a first order approximation is

ξ ( α0 (α0 + δ − α1)
α1 (α0 + δ)

(
R0 − R∗0

)
. (B.15)

We are not interested in the exact expression of ε, which is of
the order of θ, so we can assume again that ϕ0 ≈ ϕ1 and ne-
glect the ϕ’s subscript. In contrast, from ξ and Eq. (B.14) we can
derive an expression for r1, and using Eq. (B.1) we obtain Z1

Z1(ϕ) (
R0 − R∗0
α1

, (B.16)

which is always non-negative. All points with z > Z1 are then
obstructed. The resulting vignetting coefficient is V2 = Z1/L1,
i.e., using the definition of Ψ (Eq. (24)),

V2 (α1) ( Ψ
α1
· (B.17)

We have so obtained Eq. (31).

B.3. Vignetting at the exit pupil, V3

In this case, the obscuration occurs after the second reflec-
tion, on the secondary segment of the blocking shell. A
generic point of the blocking shell at z = −L∗2, i.e., r0 =
(R∗m cosϕ0,R∗m sin ϕ0,−L∗2), may intercept a ray after it was

2 From the expression of the k1 vector, it is easy to derive the stray
light pattern on a detector at a generic distance d, i.e., at z = −d. The
final coordinates of rays generated close to the intersection plane are

x(ϕ) = R0 cos ϕ − k1,x

k1,z
d,

y(ϕ) = R0 sinϕ − k1,y

k1,z
d,

and, substituting the expression of the k1 vector components, we obtain
the parametric equation of the pattern

x(ϕ) = [R0 − (2α0 + δ)d] cos ϕ + θd cos 2ϕ,
y(ϕ) = [R0 − (2α0 + δ) d] sinϕ + θd sin 2ϕ.

reflected at r2 = (r2 cosϕ2, r2 sin ϕ2, Z2), with −L2 < Z2 < 0. If it
does, the point r2 is located along with the usual vector equation

k2 ×
(
r2 − r0

)
= 0, (B.18)

where the z-coordinate of the secondary segment is given by

z2 =
r2 − R0

3α0
, with r2 < R0, (B.19)

and k2 is the direction of the ray after the second reflection,

k2 = k1 − 2
(
k1 · n2

)
n2, (B.20)

because the tangential component is conserved, while the normal
component to the surface reverses its sign in the reflection. To the
small angle approximation, since ϕ2 ( ϕ1 (Sect. 2.1),

n2 ≈


− cosϕ1
− sin ϕ1

3α0


 , (B.21)

and k1 is given by Eq. (B.12). The final ray direction3 is then

k2 (


−θ + (δ − 4α0) cosϕ1

(δ − 4α0) sinϕ1
−1


 . (B.22)

Setting ϕ2 = ϕ1 in Eq. (B.18), we obtain the two independent
equations



(
3α0 cosϕ1 + k2x

)
r2 = k2xR′m + 3α0R∗m cosϕ0

(
3α0 sin ϕ1 + k2y

)
r2 = k2yR′m + 3α0R∗m sin ϕ0,

(B.23)

where we set R′m ( R0−3α0L∗2. The solution for θ = 0 is ϕ0 = ϕ1
and

r(0)
2 = R′m +

3α0

α0 − δ
(
R′m − R∗m

)
. (B.24)

If θ > 0, we set r2 = r(0)
2 + ξ, ϕ0 = ϕ1 + ε as in Sects. B.1

and B.2. Substituting this into Eq. (B.23), approximating at the
first order and solving the linear system, we obtain ϕ0 ≈ ϕ1 and
the expression of ξ. Adding this to r(0)

2 we obtain

r2 = R′m +
3α0

α2

(
R′m − R∗m

)
, (B.25)

where α2 is given by Eq. (4). The secondary mirror region at ϕ1
with radial coordinate between r2 and R0 is then obstructed: this
is equivalent to an obscuration on the primary mirror between

3 From Eq. (B.22) we obtain that all rays reflected twice at locations
close to the intersection plane (r = R0) converge to a single point F =
(−θ f ′, 0,− f ′), as expected, with

f ′ =
R0

4α0 − δ
,

which, recalling Eq. (2) and that δ = R0/D, becomes the usual conju-
gate points formula,

1
f
=

1
f ′
+

1
D
·

Focusing at that point, indeed, does not exactly occur for points more
distant from the intersection plane. This is a well-known limit of the
double cone approximation, even if it does not affect our computation
of the effective area within large limits (Sect. 2.1).
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z = 0 and some z = Z1 < L1 (Fig. 4). The correspondence
between r1 and r2 is given by the equation (Spiga et al. 2009)

r2 (
2 (α0 + α1) R0 − 3α1r1

α2
· (B.26)

By comparing Eqs. (B.25) and (B.26), we find r1, and the corre-
sponding value of Z1 using Eq. (B.1),

Z1 (
(α2 + 3α0) L∗2 −

(
R0 − R∗m

)

α1
, (B.27)

from which, recalling that α2 = 2α0−α1 (Eq. (5)), we obtain the
vignetting coefficient, V3 = 1 − Z1/L1,

V3 (α1) ( 1 +
L∗2 (Σ − α2)

L1α1
, (B.28)

where we have used the definition of Σ (Eq. (25)). We have
thereby found Eq. (32).
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