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ABSTRACT   

One of the most important parameters determining the sensitivity of X-ray telescopes is their effective area as a function 
of the X-ray energy.  The computation of the effective area of a Wolter-I mirror, with either a single layer or multilayer 
coating, is a very simple task for a source on-axis at astronomical distance. Indeed, when the source moves off-axis the 
calculation is more complicated, in particular for new hard X-ray imaging telescopes (NuSTAR, ASTRO-H, NHXM, 
IXO) beyond 10 keV, that will make use of multilayer coatings to extend the reflectivity band in grazing incidence. 
Unlike traditional single-layer coatings (in Ir or Au), graded multilayer coatings exhibit an oscillating reflectivity as a 
function of the incidence angle, which makes the effective area not immediately predictable for a source placed off-axis 
within the field of view. For this reason, the computation of the off-axis effective area has been so far demanded to ray-
tracing codes, able to sample the incidence of photons onto the mirror assembly. Even if this approach should not be 
disdained, it would be interesting to approach the same problem from an analytical viewpoint. This would speed up and 
simplify the computation of the effective area as a function of the off-axis angle, a considerable advantage especially 
whenever the mirror parameters are still to be optimized. In this work we present the application of a novel, analytical 
formalism to the computation of the off-axis effective area and the grasp of the NHXM optical modules, requiring only 
the standard routines for the multilayer reflectivity computation. 
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1. INTRODUCTION  
The launch of a number of X-ray telescopes[1],[2],[3],[4] is foreseen in the next years, most of them carrying optical modules 
able to effectively focus X-rays beyond the present limit of 10 keV. This will be made possible not only by the increase 
of the size of the optics, but also by the adoption of shallow incidence angles and multilayer coatings to extend the 
reflected bandwidth to hard X-rays. The sensitivity of these focusing X-ray telescopes will be determined, among other 
things, by the effective area and the concentration capabilities of their hard X-ray optical modules. For this reason, the 
on-axis optical module effective area as a function of the X-ray energy is considered the basic requirement to a mirror 
module design. Nevertheless, also the effective area off-axis is an important parameter, because it chiefly determines the 
Field of View (FOV) of the telescope: in fact, it is well known that the effective area in general decreases as an 
astronomical source moves off-axis, due to both geometrical vignetting effects and to the variation of the incidence 
angles throughout the mirrors surface, which in turn causes a variation of the mirror reflectivity. The angular diameter at 
which the effective area – at a given X-ray energy - is halved with respect to the corresponding value on-axis is 
conventionally defined to be the optics FOV at that energy. Another example of the importance of this kind of 
computation is represented by the effective area variations that may arise when the optical axis randomly oscillates with 
respect to telescope axis[5], which was a major problem for the SIMBOL-X telescope,[5] which optics and focal plane 
were expected to fly onboard two separate spacecrafts. Although to a lesser extent, this problem is still to be accurately 
studied and considered for X-ray telescopes with long focal lengths, because the optics and the detectors are expected to 
be connected by an extendible truss (like NHXM and IXO), which is not perfectly rigid. The assessment of the effective 
area variation is then very important to conceive an optical design that is less affected by this drawback.  
 While in general the computation of the on-axis effective area of Wolter-I mirror for an astronomical source 
does not pose problems, the same computation off-axis is in general a more complicated task, especially in the case of 
multilayer-coated mirrors, which exhibit an oscillating reflectivity as a function of the reflection angle and the X-ray 



 
 

 
 

wavelength, λ. This is the reason why this problem has been so far faced along with ray-tracing methods, aimed at 
reconstructing each X-ray path throughout the mirror shells assembly, and more specifically at sampling the incidence 
angles of the X-rays reflected on the reflective surfaces. Such routines are recognized as very effective and accurate, but 
they are often of complex implementation and require a considerable computation time. Even if this is a viable approach, 
it is also possible to solve that problem from an analytical viewpoint, i.e., along with analytical formulae[7] to express the 
effective area as a function of  λ. This method is able to return the effective area off-axis for a Wolter-I mirror shell in 
double cone approximation with any reflective coating, including multilayers. Therefore, it represents a way to perform 
the off-axis area computation more effectively and quickly, and consequently to speed up the optical design process, 
which may entail a number of effective area evaluations. 
 In this paper we show some applications of this analytical approach to the NHXM optical modules. In Sect. 2 
we review the formulae we use throughout this paper, adding some new results, especially regarding the mirror grasp. In 
Sect. 3 we show some applications to the case of NHXM. The results are summarized in Sect. 4.   

2. OFF-AXIS EFFECTIVE AREA AND GRASP OF WOLTER-I MIRRORS  
Even though the longitudinal curvature of the parabolic and hyperbolic segments in a Wolter-I mirror is essential to 
focus X-rays to a single point, for the computation of the on- and off-axis effective area the double cone approximation 
can be suited to a good approximation, especially for mirrors with a high f-number, f#. This allows simplifying the 
geometry to be used in computing, e.g., the incidence angles for the two reflections of X-rays. We define, as in Fig. 1, R0 
to be the radius of the reflecting surface of the shell at the intersection plane, RM the maximum radius  - at the primary 
segment end, Rm the minimum radius - at the secondary segment end, f the focal length for a source at infinity, α0 the 
primary segment slope at the intersection plane, fulfilling the condition R0 = f tan(4α0). L1 and L2 are the segment lengths 
along the optical axis, in general different from each other. Finally, let δ = R0/D be the half-divergence of the source at a 
distance D, and θ to be its off-axis angle. Clearly, δ = 0 for an astronomical source. 
The results of the analytical formalism can be 
summarized in the following points. For a detailed 
derivation of the results and the comparison with ray-
tracing results, refer to[7]. 

1. As it can be seen from Fig. 1, an off-axis ray 
impinges the mirror shell at two different 
angles, α1 and α2, which in general depend on 
the impact position. In double cone 
approximation, indeed, they depend solely on 
the polar angles ϕ1, ϕ2, of impact on the two 
segments, measured from the off-axis plane. If 
θ is a small angle, ϕ1 ≈ ϕ2 and we denote with 
ϕ their common value. In these conditions, the 
incidence angles have the expressions  
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2. Denoting with rλ(α) the reflectivity of the 
mirror coating at the incidence angle α and the 
X-ray wavelength λ, the mirror effective area 
at λ in double cone approximation is  
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where (Lα)min= min(L1α1, L2α2) if positive, 
otherwise (Lα)min= 0. 

 
Fig. 1: scheme of a Wolter-I mirror shell. The incidence 

angles on the primary and secondary segments 
are shown. 

3. In the frequent case L1 = L2 = L, Eq. 3 reduces to  
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where αmin is the smallest between α1 and α2, and has a compact expression:  
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4. For a source at infinity and L1 = L2, Eq. 4 reduces simply to 
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where α1 =  α0 - θ cosϕ if positive, and zero otherwise, is αmin in the first quadrant, and α2 = α0 + θ cosϕ. On 
axis, θ  = 0 and Eq. 6 simply becomes 
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5. In the ideal case of an ideal reflectivity rλ(α) = 1, Eq. 6 can be solved explicitly to obtain the geometric area, 
A∞(θ), of the mirror with L1 = L2 for a source at infinity, for off-axis angles θ <α0:  
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Eq. 8 is exactly the result found empirically by Van Speybroeck and Chase in 1972[8] for the off-axis 
vignetting of a Wolter-I mirror, excepting the approximation π ≈ 3.  

 

Fig. 2: the incidence angle distribution on the primary segment of a Wolter-I mirror shell with α0 = 0.2 deg and off-
axis by θ = 0.1 deg, as resulting from a ray-tracing (histogram), and the same distribution obtained analytically 
(line) by plotting the normalized distribution reported in Eq. 4, for α1  < α0. 

The applicability of the mentioned double-cone approximation to Wolter-I mirrors increases with the focal 
length: more exactly, the error we commit in the effective area computation is of the order of L/f or better, therefore it 
is of the order of a few percent in real cases. For a source at infinity and if L1 = L2, if θ ≠ 0, we obtain an alternative 
form of the Eq. 6, along with a change in the integration variable from ϕ to α1, 
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where αm= max(0, α0 - θ). We note that such a change of variable would not be possible if θ = 0, because the function  
α1 =  α0 - θ cosϕ would collapse to a constant. The effective area expression in Eq. 9, when put in this form, has the 
advantage that the integration is directly performed over the incidence angle range in which the reflectivity is 
calculated. For this reason, this form is suitable to compute the effective area as a function of θ, at a single X-ray 
wavelength λ. In contrast, Eq. 6 is better suited for computing AD(λ, θ) at fixed θ.  

It is worth noting that Madsen et al.[9] independently found an expression similar to Eq. 9, but the weight 
function, Winc, that appeared in there was not written explicitly because it was derived from a ray tracing. Comparing 
that equation with Eq 9, we can now write the explicit expression of Winc, adapting the notation to the one in use in this 
work, 
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provided that the integration is performed only in the region where α1 ≤ α0. Where α1 > α0, the same distribution is 
valid, after substituting α1 → α2: the resulting curve is thereby symmetric with respect to α0. The Winc function, which 
should be interpreted as an effective area density per incidence angle unit, is plotted in Fig. 2, after normalization. The 
area distribution obtained from a ray tracing is also shown, finding an excellent agreement. The angle distribution of  
Eq. 10 obtained is extensively used in another paper of this volume[10]. 
 The off-axis effective area of the optical module is simply obtained by summing the off-axis effective area of 
all mirrors, on condition that the mutual obstruction of mirrors is negligible. If the mirrors are densely nested, the total 
effective area is smaller than the sum of the effective area of individual mirrors. However, in the following we suppose 
that the obstruction off-axis is negligible.    

The expression of the effective area as a function of the off-axis angle also allows to measure the field of 
view of the optical module, F(λ), usually defined as the angular diameter at which the effective area is halved with 
respect to the on-axis value. F(λ) is also related to another very important quantity: the grasp, G(λ), defined as the 
product of the effective area on-axis and the solid angle delimited by the field of view, 
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Such a definition is not very rigorous, because it supposes that the effective area changes slowly for small off-axis 
angles θ within F(λ) with respect to A∞(λ,0), then that it suddenly drops outside the field of view. A more general 
definition can be  
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where dΩ = 2π sinθ dθ is the infinitesimal solid angle centered on the optical axis, and the integration is extended up 
to a maximum off-axis angle Θ, where the effective area can be considered negligible. The dependence on λ, the X-ray 
wavelength, entirely comes from the λ dependence of the coating reflectivity. We note that the grasp is additive, 
therefore Eq. 12 applies to single mirrors as well as non-obstructed mirror assemblies. Moreover we note that, 
according this definition, the on-axis area does not contribute to the grasp, because for θ = 0 the integrand vanishes.   

When applied to a single mirror with primary segment slope α0, the integral in Eq. (12) is not of immediate 
computation because it requires a double integration: the first one in ϕ and the second one in θ. However, we can 
reduce the computation to a single integration. In fact, it can be shown that the grasp of a single mirror can be 
computed directly from the mirror reflectivity of the coating: 
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The proof of the Eq. 13 is reported in Appendix. We note that the grasp explicitly depends on the maximum off-axis 
angle Θ, even if it cannot be much larger than α0 in order to avoid the obstruction from neighboring shells. 

 



 
 

 
 

3. THE OFF-AXIS EFFECTIVE AREA OF THE NHXM MODULES 
In this section we present the application of the formulae reported in Sect. 2 to the computation of the effective area of 
the NHXM hard X-ray telescope[2].  The NHXM optical system, as resulting from a detail optimization[11], comprises 4 
identical modules with 70 mirror shells of 391 to 155 mm diameter and a 10 m focal length. The α0 angle takes on 
values in the interval 0.28 – 0.11 deg, and L1 = L2 = 300 mm for all shells; therefore the effects of the deviation from 
the double cone profile on the effective area can be computed to be < L/f = 3%, and the formulae for the effective area 
reported in Sect. 2 can be applied to a good approximation. The multilayer coatings are Pt/C of the graded type, in 
order to effectively reflect X-rays in a wide energy band, and in particular the shells with the shallowest angles have to 
reflect up to 80 keV. To obtain such a reflectance with the minimum number of bilayers, the shells are collected into 9 
groups, and for each of them a specific multilayer recipe[11] has been optimized. In this work we assume that 
configuration as a baseline for the NHXM optical modules. 

However, before adding up the effective area of mirrors to obtain the effective area of the modules, another 
point has to be checked: the mutual obstruction of shells has to be negligible over the requested telescope’s field of 
view, 12 arcmin diameter. To this end, a 6 arcmin angular aperture – as seen from the intersection plane – is left 
between each couple of adjacent shells. Considering that the thickness of the mirror walls varies from 0.34 to 0.13 
mm, going inwards, this implies that a gap of 1.97 to 1.1 mm, always going inwards, has to be left between shells at 
the intersection plane. Actually, this is certainly sufficient to avoid the obstructions up for θ < 5 arcmin, whilst for 
larger off-axis angles there is some effective area loss due to the impact of some rays on the outer surface of the 
secondary segments after the second reflection. Nevertheless, it is possible to compute that such effective area loss at  
θ = 6 arcmin is limited to a few percent. Therefore, we hereafter assume the equations of Sect. 2 as valid within a few 
percents accuracy. 

 
Fig. 3: the effective area of a Wolter-I mirror with 2R0 = 297 mm, L = 300 mm, f = 10 m, adopting as a multilayer 

recipe[11] a 169 couples of Pt/C layers, minimum d-spacing 24.7 Å, maximum d-spacing 146.7 Å, a power-law 
exponent 0.223, and a thickness ratio Γ = 0.42 as a function of the off-axis angle, for different X-ray energies. 
A 4 Å roughness rms is assumed. 

As a first example of computation, we show the effective area of a single mirror, as a function of the off-axis 
angle, for selected X-ray energies (Fig. 3): the mirror and the multilayer coating parameters are also reported therein. 
The effective area values are computed using Eq. 9. We note that at 5 keV the effective area variation essentially 
follows a linear decrease, in accord with Eq. 8, because the coating reflectivity at that energy is nearly constant with 
the incidence angle; therefore the effective area trend is almost indistinguishable from the decrease of the sole 
geometric area. At higher energies, the effective area also decreases with the off-axis angle, but with oscillating trends 
depending on the energy chosen, because of the oscillatory behavior of the multilayer reflectivity. 

The second computation example regards the total effective area of a module of NHXM, which can be 
calculated as a function of the X-ray energies for some values of θ. The result is displayed in Fig. 4, on-axis, at 2, 4, 
and 6 arcmin off-axis. The effective area values up to 80 keV fulfills the requirement of a > 1000 cm2 at 1 keV (and 
even the 1500 cm2 goal), 350 cm2 at 30 keV, and 100 cm2 at 70 keV on-axis, with the three imaging modules. 



 
 

 
 

Moreover, from the decrease of the effective area with the off-axis angle we can evaluate the Field of View of the 
module: > 12 arcmin up to 40 keV, and decreasing as the X-ray energy is increased: ~9 arcmin at 50 keV, ~4 arcmin at 
70 keV. However, the exact value cannot be computed accurately because a much larger sampling of the off-axis angle 
would be needed. 

 
Fig. 4: the effective area as a function of the X-ray energy, computed using Eq. 6, for a single module of NHXM, with 

optimized Pt/C multilayer recipes, assuming a 4 Å roughness rms and a 10% vignetting due to the spider 
obstruction. The different curves are traced for various off-axis angles. 

 As a last example, we show in Fig. 5 the variation of the total effective area of a single module of the NHXM 
telescope, as a function of the off-axis angle, for some selected X-ray energies. The computation has been performed 
in a fast way by applying Eq. 9 to each mirror in the module and summing the curves obtained for all mirrors. The 
result is similar to Fig. 3, with a linear decrease at 5 keV essentially determines by the sole geometric vignetting, and 
with different slopes at higher energies determined by the chosen multilayer recipes. In this case, however, the 
oscillatory trends seen in the case of a single mirror are not present because they are averaged out when the 
contribution of the individual mirrors are summed up. The field of view, in this case, can be accurately measured for 
all the energies listed in Fig. 5. At this regard, we note that all effective areas are not halved yet at 6 arcmin, the radius 
of the NHXM field of view, and that the effective area curves do not exhibit gaps, peaks or dips. This is a confirmation 
of the good performance of the adopted set of multilayer recipes. The effects of the multilayer optimization on the 
field of view are treated with more detail in another conference proceeding of this volume[10].   

 
Fig. 5: the effective area as a function of the off-axis angle, computed using Eq. 9, for a single module of NHXM, with 

optimized Pt/C multilayer recipes, at selected X-ray energies. Note that at all considered energies the effective 
area at 6 arcmin off-axis is more than half the on-axis value, therefore the optics’ field of view is wider than 12 
arcmin diameter. 



 
 

 
 

4. CONCLUSIONS 
In this work we have presented the application to the New Hard X-ray mission of a set of novel, analytical formulae to 
compute the off-axis effective area of a Wolter-I X-ray mirror in double cone approximation, and more generally to 
compute the off-axis effective area of an X-ray optical module. We have also obtained some derived formulae to 
compute quickly the field of view and the grasp of a grazing incidence X-ray mirror. The method can be applied to any 
reflective coating; therefore it will be of considerable usefulness in future optimizations of the optical design of 
grazing incidence X-ray optical modules. 

APPENDIX: INTEGRAL FORMULA FOR THE GRASP OF AN X-RAY MIRROR 

In this appendix we reduce the grasp formula for a single mirror (Eq. 12) to a single integration over the incidence 
angle on the primary segment of the mirror, α1. Using the definition of dΩ = 2π sinθ dθ, we write Eq. 12 as 
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where Θ is the maximum off-axis angle to which we extend the computation. Because 0 < θ < Θ is shallow, we can 
approximate sinθ ∼ θ. Using Eq. 9, we can rewrite the expression for the grasp as 
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where αm= max(0, α0 - θ). For a fixed α1, the θ variable takes on values in the interval α0 - α1 < θ < Θ (see Fig. 6). We 
thereby derive, by exchanging the integration order, 
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The second integral can be immediately solved, and we derive Eq. 13: 
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We note that, unlike in Eq. 9, in Eq. A4 the integrand is finite everywhere. 

 

 
Fig. 6: the integration set (the grayed area) in the (θ, α1) space. 

 
For the ideal case of rλ(α) =1 for any α and λ, and if Θ = α0, Eq. A4 becomes 
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that, after some algebra, becomes 
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The same exact result can be obtained by direct substitution of the geometric area expression (Eq. 8) into the definition 
of grasp (Eq. 12). Assuming also Eq. 11 as valid, we also obtain the geometric field of view, 
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while by setting Eq, 8 to half the area on-axis we obtain F = πα0/2 ≈ 1.57α0, in quite good agreement with Eq. A7. 

ACKNOWLEDGMENTS 

This work has been financed by the Italian Space Agency (contract I/069/09/0). 

REFERENCES 

[1]. J. E. Koglin, H. An, K. L. Blaedel, N. F. Breinholt, F. E. Christensen, W. W. Craig, T. A. Decker, C. J. Halley, 
L.C. Hale, F. A. Harrison, C. P. Jensen, K. K. Madsen, K. Mori, M. J. Pivovaroff, G. Tajri, W. W. Zhang, 
“NuSTAR hard X-ray optics design and performance”. SPIE Proc. 7437, 74370C (2009) 

[2]. S. Basso, G. Pareschi, O. Citterio, D. Spiga, G. Tagliaferri, M. Civitani, L. Raimondi, G. Sironi, V. Cotroneo, 
B. Negri, G. Parodi, F. Martelli, G. Borghi, A. Orlandi, D. Vernani, G. Valsecchi, R. Binda, S. Romaine, P. 
Gorenstein, P. Attina’, “The optics system of the New Hard X-ray Mission: design and development”, SPIE 
Proc. 7732, this conference (2010) 

[3]. A. Furuzawa, Y. Ogasaka, H. Kunieda, T. Miyazawa, M. Sakai, Y. Kinoshita, M. Makinae, S. Sasaya, Y. 
Kanou, D. Niki, T. Ohgi, N. Oishi, K. Yamane, N. Yamane, N. Yishida, Y. Haba, Y. Tawara, K. Yamashita, M. 
Yishida, Y. Maeda, H. Mori, K. Tamura, H. Awaki, and T. Okajima, “The current status of the ASTRO-H/HXT 
development facility”, SPIE Proc. 7437, 743709 (2009) 

[4]. IXO web page, http://ixo.gsfc.nasa.gov/ 
[5]. V. Cotroneo, P. Conconi, G. Cusumano, G. Pareschi, D. Spiga and G. Tagliaferri, “Effects of small oscillations 

on the Effective Area”, AIP conference proceedings, CP1126, 88-90 (2009) 
[6]. G. Pareschi, P. Attina’, S. Basso, G. Borghi, W. Burkert, R. Buzzi, O. Citterio, M. Civitani, P. Conconi, V. 

Cotroneo, G. Cusumano, E. Dell’Orto, M. Freyberg, G. Hartner, P. Gorenstein, E. Mattaini, F. Mazzoleni, G. 
Parodi, S. Romaine, D. Spiga, G. Tagliaferri, R. Valtolina, G. Valsecchi, D. Vernani, “Design and development 
of the SIMBOL-X hard X-ray optics”, SPIE Proc. 7011, 70110N (2008)  

[7]. D. Spiga, V. Cotroneo, S. Basso, P. Conconi, “Analytical computation of the off-axis effective area of grazing-
incidence X-ray mirrors”, Astronomy and Astrophysics 505, 373-384 (2009) 

[8]. L. P. Van Speybroeck, R. C. Chase, “Design Parameters of Paraboloid - Hyperboloid Telescopes for X-ray 
astronomy”, Appl. Opt. 11(2), 440-445 (1972)  

[9]. K. K. Madsen, F. A. Harrison, P. H. Mao, F. E. Christensen, C. P. Jensen, N. Brejnholt, J. Koglin, M. J. 
Pivovaroff, “Optimization of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array”, 
SPIE Proc. 7437, 743716 (2009) 

[10]. V. Cotroneo, G. Pareschi, D. Spiga, G. Tagliaferri, “Effects of the coating optimization on the field of view of a 
Wolter X-ray telescope”, SPIE Proc. 7732, this conference (2010) 

[11]. V. Cotroneo, G. Pareschi, D. Spiga, G. Tagliaferri, “Optimization of the reflecting coatings for the New Hard 
X-ray Mission”, SPIE Proc. 7437, 743717 (2009) 


