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ABSTRACT

Aims. The focusing performance of X-ray optics (conveniently expressed in terms of HEW, Half Energy Width) strongly depend on
both mirrors deformations and photon scattering caused by the microroughness of reflecting surfaces. In particular, the contribution
of X-ray Scattering (XRS) to the HEW of the optic is usually an increasing function H(E) of the photon energy E. Therefore, in
future hard X-ray imaging telescopes of the future (SIMBOL-X, NeXT, Constellation-X, XEUS), the X-ray scattering could be the
dominant problem since they will operate also in the hard X-ray band (i.e. beyond 10 keV). In order to ensure the imaging quality at
all energies, clear requirements have to be established in terms of reflecting surfaces microroughness.
Methods. Several methods were proposed in the past years to estimate the scattering contribution to the HEW, dealing with the surface
microroughness expressed in terms of its Power Spectral Density (PSD), on the basis of the well-established theory of X-ray scattering
from rough surfaces. We faced that problem on the basis on the same theory, but we tried a new approach: the direct, analytical
translation of a given surface roughness PSD into a H(E) trend, and – vice versa – the direct translation of a H(E) requirement into a
surface PSD. This PSD represents the maximum tolerable microroughness level in order to meet the H(E) requirement in the energy
band of a given X-ray telescope.
Results. We have thereby found a new, analytical and widely applicable formalism to compute the XRS contribution to the HEW
from the surface PSD, provided that the PSD had been measured in a wide range of spatial frequencies. The inverse problem was also
solved, allowing the immediate evaluation of the mirror surface PSD from a measured function H(E). The same formalism allows
establishing the maximum allowed PSD of the mirror in order to fulfill a given H(E) requirement. Practical equations are firstly
developed for the case of a single-reflection optic with a single-layer reflective coating, and then extended to an optical system with N
identical reflections. The results are approximately valid also for multilayer-coated mirrors to be adopted in hard X-rays. These results
will be extremely useful in order to establish the surface finishing requirements for the optics of future X-ray telescopes.
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1. Introduction

The adoption of grazing-incidence optics in X-ray telescopes in
the late 70s allowed a great leap forward in X-ray astronomy
because they endowed the X-ray instrumentation with imag-
ing capabilities in the soft X-ray band (E < 10 keV). The
excellent performances of the soft X-ray telescopes ROSAT
(Aschenbach 1988), Chandra (Weisskopf 2003) and Newton-
XMM (Gondoin et al. 1998) are well known.

To date, the utilized technique to focus soft X-rays consists
in systems of double-reflection mirrors with a single layer coat-
ing (Au, Ir) in total external reflection at shallow grazing inci-
dence angles. In this case, the incidence angle θi (as measured
from the mirror surface) cannot exceed the critical angle for
total reflection, otherwise the mirror reflectivity would be very
low. The critical angle is inversely proportional to E, the energy
of the photons to be focused. Using Au coatings, for instance,
the incidence angle cannot exceed ∼0.4 deg for photon energies
E ≈ 10 keV.

An extension of this technique to the hard X-ray energy band
(E > 10 keV) can be pursued by combining long focal lengths
(>10 m), very small incidence angles (0.1÷ 0.25 deg), and wide-
band multilayer coatings to enhance the reflectance of the mir-
rors at high energies (Joensen et al. 1995; Tawara et al. 1998).

A very long focal length is hardly managed using a single
spacecraft, therefore the optics and the focal plane instruments
should be carried by two separate spacecrafts in formation-
flight configuration. This is the baseline for the future X-ray
telescopes SIMBOL-X (Pareschi & Ferrando 2006) and XEUS
(Parmar et al. 2004). Other hard X-ray imaging telescopes of
the future are NeXT (Ogasaka et al. 2006) and Constellation-X
(Petre et al. 2006).

The focusing and reflection efficiency of X-ray optics can be
tested and calibrated on ground by means of full-illumination
X-ray facilities like PANTER (Bräuninger et al. 2004;
Freyberg et al. 2006), successfully utilized in the last years to
calibrate the optics of a number of soft X-ray telescopes. The
PANTER X-ray facility now allows testing in soft (0.2÷ 10 keV)
and hard (15 ÷ 50 keV) X-rays multilayer-coated optics pro-
totypes for future X-ray telescopes (Pareschi et al. 2005;
Romaine et al. 2005). The source distance finiteness causes
some departures of the optic performances, with respect to
the case with the source at astronomical distance: effective
area loss, different incidence angles on paraboloid and hyper-
boloid, focal length displacement, a slight focal spot blurring
(Van Speybroeck & Chase 1972). However, there effects can
be quantified and subtracted from experimental data. After this
treatment, the focusing – concentration performances of the
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optic can be experimentally characterized as a function of the
incident photon energy, in terms of Half-Energy Width (HEW)
and Effective Area (EA).

The focusing performance, in particular, is altered by mirror
deformations that may arise in the manufacturing, handling, in-
tegration, positioning processes. The consequent imaging degra-
dation can be calculated from the measured departures of the
mirrors from the nominal profile, by means of a ray-tracing pro-
gram. As long as the geometrical optics approximation can be
applied, the effect is independent of the photon energy. The fig-
ure errors contribution to the HEW can be also directly measured
using a highly collimated beam of visible/UV light in a precision
optical bench. In this case, however, the light diffraction has to
be carefully estimated and subtracted.

Another drawback is the X-ray scattering (XRS) caused by
the microroughness of reflecting surfaces (Church et al. 1979;
Stearns et al. 1998; Stover 1995; and many others). The XRS
spreads a variable fraction of the reflected beam intensity in the
surrounding directions: the result is the effective area loss in the
specular direction (i.e. in the focus) and a degradation of the
imaging quality. The XRS is an increasing function of the pho-
ton energy; due to the impact that the XRS can have on astro-
nomical X-ray images quality, the height fluctuations rms of the
mirror surface should not exceed few angströms. Loss of effec-
tive area is also caused by interdiffusion of layers in multilayer
coatings, which enhances the X-ray transmission and absorption
throughout the stack. On the other hand, an uniform interdiffu-
sion does not cause X-ray scattering (Spiller 1994), hence it does
not contribute to the focusing degradation.

The microroughness of an X-ray mirror can be measured on
selected samples using several metrological instruments, each of
them sensitive to a definite interval of spatial scales l̂: Long Trace
Profilometers (10 cm > l̂> 0.5 mm: Takács et al. 1999), optical
interference profilometers (5 mm > l̂> 10 µm) and Atomic Force
Microscopes (100 µm > l̂> 5 nm) can be suitable instruments
to provide a detailed profile characterization of X-ray mirrors
surface. It is convenient to present the deviation of surface from
the ideality in terms of Power Spectral Density (PSD), because
its values do not depend on the measurement technique in use
(see ISO 10110 Standard). In addition, the XRS diagram, and
consequently the HEW, can be immediately computed from the
PSD at any photon energy (Church et al. 1979).

In the past years, several approaches were elaborated to
relate a mirror PSF (Point Spread Function) to the PSD
of its surface. Among a wealth of works, we can cite
(De Korte et al. 1981) the assumption of a Lorentzian model
for the PSD to fit the mirror PSFs at some photon energies,
allowing the derivation of two parameters (roughness rms and
correlation length) of the model PSD. Christensen et al. (1988)
perform a fit of experimental high-resolution XRS data dealing
with the surface correlation function. Harvey et al. (1988) re-
late the PSF of Wolter-I optics to the parameters of an exponen-
tial self-correlation function along with a transfer function-based
approach. Willingale (1988) derived the surface PSD of a mirror
from the wings of a few PSFs, measured at PANTER at some
soft X-ray photon energies. O’Dell et al. (1993) interpret the PSF
of a focusing mirror on the basis of surface roughness and partic-
ulate contamination. Zhao & Van Speybroeck (2003) construct
from the PSD of a focusing mirror a model surface and compute
the X-ray scattering PSF from the Fraunhofer diffraction theory.

In the present work that problem is faced in a new and differ-
ent way, looking for a general and simple link between measured
roughness and mirror HEW. More precisely, we considered the

following question: for an X-ray grazing-incidence optic, what
is the maximum acceptable PSD of the surface that fulfills the
angular resolution (HEW) requirements of the telescope, in all
the energy band of sensitivity?

In this work we shall give a definite answer to this question.
In Sect. 2 we shall summarize the causes of imaging degradation.
In Sect. 3 we show how to evaluate H(E), the XRS contribution
to the HEW of a focusing mirror at the photon energy E, from
any surface microroughness PSD, measured over a very wide
range of spatial frequencies. We shall see in Sect. 4 that for the
special class of fractal surfaces we can even relate the power-
law indexes of PSD and HEW, and in Sect. 5 we see how to treat
the other cases. Then we prove in Sect. 6 that the formalism can
be reversed, providing thereby an independent evaluation of the
surface PSD from an analytical calculation over H(E), and in
Sect. 7 we extend the results to focusing mirrors with more than
one reflection. Finally, an example of computation is provided in
Sect. 8.

2. Contributions to the imaging degradation

We shall henceforth indicate with λ the wavelength of photons
impinging on the mirror, and we shall consider the HEW as a
function of λ instead of the photon energy E. For isotropical re-
flecting surfaces in grazing incidence, the X-ray scattering dis-
tribution lies essentially in the incidence plane, so we denote the
incidence angle on the mirror as θi and the scattering angle as θs,
both measured from the surface plane (a schematic of the scatter-
ing geometry is drawn in Fig. 1). If we do not consider the optic
roundness errors, the longitudinal deviations from the nominal
profile of a focusing mirror can be classified on the basis of their
typical length l̂. According to De Korte et al. (1981), they are:

1. Power errors: errors with l̂ equal to the mirror length L. They
consist in a single-concavity deformation of the profile with
respect to the nominal one.

2. Regularity errors: errors in the spatial range from 0.1 L <
l̂ < 0.5 L.

3. Surface roughness: surface defects with l̂ < 0.1 L.

However, other criteria were also formulated to separate figure
errors from roughness. Consider a single Fourier component of
the surface profile with wavelength l̂ and root mean square σ.
That Fourier component is dominated by figure error if it fulfills
the condition (Aschenbach 2005)

4π sin θiσ > λ. (1)

Otherwise, it is dominated by microroughness. In other words,
surface defects within the smooth-surface approximation can be
mainly considered as microroughness. To understand the impor-
tance of this approximation, we write the optical path difference
∆s of X-rays reflected by two points of the surface with a hori-
zontal spacing l̂ and vertical spacing σ̂ = 2

√
2σ (for optically-

polished surfaces, σ is a increasing function of l̂, and usually
σ � 10−3l̂) as

∆s = l̂(cos θs − cos θi) + σ̂(sin θi + sin θs) (2)

that, for small incidence angles, becomes

∆s = l̂ sin θi(θs − θi) + σ̂(θi + θs). (3)

If that component is responsible for X-ray scattering, it has to
be ∆s ≈ λ, to cause the diffraction from surface features with
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Fig. 1. The geometry of X-ray scattering: the strictly speaking “re-
flected” rays (i.e. in the focus direction) are characterized by the equal-
ity θs = θi, the others are scattered apart. The rough surface is a simu-
lated one, assuming a PSD with power-law index n = 2.4 (see Sect. 4).

a l̂ spacing and σ̂ height. Conversely, the “figure errors”, which
are treated with the methods of the geometrical optics, should
be characterized by the inequality ∆s � λ. Note that this con-
dition becomes similar to Eq. (1) in the limit |θi − θs | → 0. The
application of this criterion and of the subsequent X-ray scatter-
ing theory requires the incident radiation to be spatially coher-
ent over the spatial scale l̂, so that the properties of the reflected
wavefront are determined only by the coherence properties of
the mirror surface. This in turn requires the angular diameter of
the source φS to fulfill the inequality (Holý et al. 1999)

φS <
λ

l̂ sin θi
(4)

this equation sets a maximum to the values of l̂ that can be used
in the application of the results presented in this work. The limi-
tation can affect X-ray sources at finite distance, like those used
for X-ray optics calibrations in full-illumination setup. For very
distant astronomical X-ray sources, the condition 4 is met even
for larger l̂, up to l̂ ≈ L.

It is worth pointing out that, for a given reflecting surface, the
separation of figure errors from microroughness is strongly af-
fected by the incidence/scattering angles. In fact, even for large l̂,
∆s can become comparable with λ, if θi and θs are sufficiently
small: thus, the spatial wavelength window of interest for X-ray
scattering can shift to the large l̂ domain (or, equivalently, to the
range of low spatial frequencies f = 1/l̂), provided that the con-
dition 4 is fulfilled.

Let us now consider how to separate the figure and scattering
terms in HEW data. In absence of XRS, the mirror PSF would
be independent of the energy and due only to figure errors (i.e.
in the approximation of the geometrical optics). The resulting
HEW would be also constant. Instead, due to the XRS, the figure
PSF is convolved with the X-ray scattering PSF to return the
PSF(λ) being measured (Willingale 1988; Stearns et al. 1998;
and many others),

PSF(λ) = PSFfig ⊗ PS FXRS(λ). (5)

The resulting HEW will depend on the photon wavelength, as
it does the PSF. In order to isolate the scattering term from the
total PSF a deconvolution should be carried out, provided that
the PSFfig is known. However, if we assume that the XRS and

the mirror deformations are statistically independent, the total
HEW can be approximately calculated as the squared sum of the
two contributions:

HEW2(λ) ≈ HEW2
fig + H2(λ). (6)

An estimation of HEWfig can be obtained:

1. from the application of a ray-tracing code to several mea-
surements of the mirror profile,

2. from reliable extrapolation of the HEW(λ) curve to E → 0,
in absence of low-energy diffraction effects like dust contam-
ination, studied in detail by O’Dell et al. (1993);

3. from a direct measurement of the HEW in visible/UV light,
provided that the diffraction at the mirror edges can be reli-
ably calculated and subtracted.

Once known the measured HEW(λ) experimental trend and the
HEWfig term, Eq. (6) can be used to isolate the scattering contri-
bution from the experimental HEW trend: we shall prove in the
next section that the H(λ) function is immediately related to the
reflecting surface 1D Power Spectral Density (PSD) P( f )

P( f ) =
1
L

∣∣∣∣∣∣
∫ L

0
z(x)e−2πi f dx

∣∣∣∣∣∣
2

(7)

where z(x) is a height profile (of length L) of the mirror, mea-
sured in any direction (Stover 1995): the surface is assumed to
be isotropic, and the spectral properties of the profile to be rep-
resentative of the whole surface. The PSD is often measured
in nm3 units, and for optically-polished surfaces it is usually a
decreasing function of the frequency f .

PSD measurements have always a finite extent [ fmin, fmax],
determined by the length and the spatial resolution of the mea-
sured profile. As well known, the surface rms σ is simply com-
puted from the PSD by integration over the spatial frequencies f :

σ2 =

∫ fmax

fmin

P( f ) d f (8)

note that the integration range should always be specified.

3. Estimation of H(λ) for single-reflection focusing
mirrors

3.1. Single-layer coatings

Firstly, we suppose the mirror to be plane and single-layer
coated. For a surface with roughness rms σ, the specular beam
intensity obeys the well-known Debye-Waller formula

R = RF exp

(
−16π2σ2 sin2 θi

λ2

)
, (9)

here RF is the reflectivity at the grazing incidence angle θi, as
calculated from Fresnel’s equations (zero roughness). However,
it should be noted in Eq. (9) that neither the spatial frequencies
range where the PSD should be integrated is specified, nor the
separation between reflected and scattered ray is clearly indi-
cated: these ambiguities can be solved as follows.

Let us derive the total scattered intensity Is from the con-
servation of the energy: for smooth surfaces, i.e. fulfilling the
inequality 2σ sin θi � λ, we can approximate

Is = I0RF

[
1 − exp

(
−16π2σ2 sin2 θi

λ2

)]

≈ I0RF
16π2σ2 sin2 θi

λ2
· (10)
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In grazing incidence, X-ray scattering lies mainly in the inci-
dence plane. Moreover, the normalized scattered intensity per ra-
dian at the scattering angle θs (either θs > θi or θs < θi) is related
to the PSD along with the well-known formula at first-order ap-
proximation (Church et al. 1979; Church & Takács 1986), valid
for smooth, isotropic surfaces and for scattering directions close
to the specular ray (i. e. |θs − θi| � θi),
1
I0

dIs

dθs
=

16π2

λ3
sin3 θiRFP( f ) (11)

where P( f ) is the Power Spectral Density of the surface (Eq. (7))
and I0 is the flux intensity of the incident X-rays. If the scattered
intensity is evaluated at the scattering angle θs, the PSD can be
immediately evaluated as a function of the spatial frequency f :

f = l̂−1 =
cos θi − cos θs

λ
≈ sin θi(θs − θi)

λ
· (12)

In Eq. (12) the approximation was justified by the assumption
|θs − θi| � θi and the negative frequencies are convention-
ally assumed to scatter at θs < θi: the assumed approximations
make the XRS diagram symmetric, because the PSD is an even
function.

For a single-reflection mirror shell, the extension of the for-
mulae above-mentioned is straightforward by regarding |θs − θi|
as the angular distance at which the PSF is evaluated. The fo-
cal image is the superposition of many identical XRS diagrams
on the image plane, generated by every meridional section of the
mirror shell: since a π angle rotation of every meridional plane of
the shell sweeps the whole image plane, the scattered intensity is
spread over a π angle. The integration on circular coronae used
to compute the mirror PSF (at positive angles) compensates this
factor multiplying the XRS diagram by 2π (De Korte et al. 1981).
The remaining 2-fold factor accounts for the negative frequen-
cies in the surface PSD. We shall henceforth suppose that the
factor 2 is embedded in the PSD definition. Therefore, Eqs. (11)
and (12) can be used to describe the XRS contribution to the PSF.

We are now interested in the scattered power at angles larger
than a definite angle αmeasured from the focus. Due to the steep
fall of scattering intensity for increasing angles, the integral has
a finite value

I [|θs − θi| > α] =
∫ π−θi

α

dIs

dθs
dθs. (13)

Combining Eqs. (11) and (13), one obtains:

I [|θs − θi| > α] = I0RF
16π2 sin3 θi

λ3

∫ π−θi

α

P( f ) dθs (14)

with respect to the definition used in Eqs. (7) and (11), a factor
2 was included in the PSD. The upper integration limit corre-
sponds to a photon back-scattering: at first glance, this seems
to violate our small-scattering angle assumption (Eqs. (11)
and (12)), but it should be remembered that only the angles close
to θi contribute significantly to the integral in Eq. (13): hence its
value should not be significantly affected by a particular choice
of the upper integration limit. After a variable change from θs
to f (Eq. (12)), Eq. (14) becomes (approximating cos θi ≈ 1 in
the upper integration limit):

I [|θs − θi| > α] = I0RF
16π2 sin2 θi

λ2

∫ 2
λ

f0

P( f ) d f (15)

where f0 = α sin θi/λ is the spatial frequency corresponding to
the scattering at the angle α. As expected, this equation equals

the integrated scattering according to Eq. (10), provided that we
identify I [|θs − θi| > α] with Is, and the squared roughness rms
with

σ2 =

∫ 2
λ

f0

P( f ) d f . (16)

Equation (16) is in agreement with Eq. (8), but it states
clearly the window of spatial frequencies involved in the XRS.
Therefore, for a definite angular limit α the “reflected beam”
intensity can be simply calculated by using the Debye-Waller
formula, provided that σ2 is computed from the PSD integration
beyond the frequency f0, which corresponds to an X-ray scat-
tering at α. The upper integration limit is a very high frequency
(close to 1/Å): hence, the atomic structure of the surface is not
important in the integral of Eq. (16). Moreover, considering that
the PSD trend for optically-polished surfaces decreases steeply
for increasing f , the largest contribution to the integral should
be given by the frequencies close to f0.

Now we can evaluate H(λ), the scattering term of the HEW.
For simplicity, in the following we will suppose that the HEW
is obtained from the collection of all the reflected/scattered pho-
tons: this allows us to avoid problems related to the finite size of
the detector, and to extend the surface roughness PSD up to very
large spatial frequencies. By definition, H(λ) is twice the angu-
lar distance from focus at which the integrated scattered power
halves the total reflected intensity:

I [|θs − θi| > α] =
1
2

I0RF (17)

we immediately derive, from Eq. (9),

exp

(
−16π2σ2 sin2 θi

λ2

)
=

1
2
, (18)

where σ2 has now the meaning as per Eq. (16). Solving Eq. (18)
for σ2 and equating to the integral of the PSD,

∫ 2
λ

f0

P( f ) d f =
λ2 ln 2

16π2 sin2 θi
, (19)

once known the PSD from topography measurements over a
wide range of spatial frequencies, the PSD numerical integra-
tion in Eq. (19) allows to recover f0. In turn, f0 is related to H(λ)
through Eq. (12), that we write in the following form

H(λ) =
2λ f0
sin θi

, (20)

where H is measured in radians. Note that the condition
H(λ) � θi is very important, for Eq. (20) to hold. Small scat-
tering angles and grazing incidence are also very important for
the considerations that follow.

3.2. Multilayer coatings

The obtained result (Eq. (19)) can be extended to mirrors with
multilayer coatings, used to enhance the grazing incidence re-
flectivity of mirrors in hard X-rays (E > 10 keV). In general,
the multilayer cannot be characterized by means of a single
PSD, due to the evolution of the roughness throughout the stack
(Spiller et al. 1993; Stearns et al. 1998). Moreover, due to the in-
terference of scattered waves at each multilayer interface, the
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final scattering pattern is more structured than Eq. (11), with
peaks whose height depends on the phase coherence of the in-
terfaces (Kozhevnikov 2003). The HEW term can be computed
numerically from the XRS diagram.

In order to extend Eq. (19) to mirrors coated with a graded
multilayer, we have to assume the additional requirements:

1. the PSD is constant and completely coherent throughout
the multilayer stack: i.e., the deposition process does not
cause additional roughness and replicates simply the profile
of the substrate. Therefore, all the PSDs and all the cross-
correlation between interface profiles equal the PSD mea-
sured at the multilayer surface. This is often observed in
the l̂ > 10 µm regime (Canestrari et al. 2006), where most
of frequencies f0 fall when the incidence angle is less than
0.5 deg. Most of microroughness growth, indeed, takes place
for 10 µm> l̂ > 0.1 µm.

2. the multilayer reflectivity Rλ(θi) at the photon wavelength λ
changes gradually over angular scales of H(λ). Ideally, this
condition should be fulfilled by wideband multilayer coat-
ings for astronomical X-ray mirrors.

Under these hypotheses, a quite tedious calculation reported in
Appendix A shows that Eq. (19) can be approximately applied
also with multilayer coatings. The following developments also
apply in that case.

4. H(λ) for a fractal surface

We apply now Eqs. (19) and (20) to the typical (monodimen-
sional) PSD model for optically-polished surfaces, a power-law
(Church 1988)

P( f ) =
Kn

f n
, (21)

where the power-law index n is a real number in the interval
1 < n < 3 and Kn is a normalization factor. A power-law PSD is
typical of a fractal surface, and it represents the high-frequency
regime of a K-correlation model PSD (Stover 1995). This model
exhibits a saturation for f → 0 that avoids the PSD divergence.
In practice, the fractal behavior dominates in almost all spatial
frequencies of interest for X-ray optics.

There are interesting reasons for which n can take val-
ues on the interval (1:3). In fact, for a surface in the 3D
space, n is related to its Hausdorff-Besicovitch dimension D
(Barabási & Stanley 1995) along with the equation n = 7 − 2D
(see Church 1988; Gouyet 1996). The restriction 1 < n < 3 for
a fractal surface is therefore necessary to have 3 > D > 2.

A power-law PSD is particularly interesting because the in-
tegral on left-hand side of Eq. (19) can be explicitly calculated:

Kn

f 1−n
0 −

(
2
λ

)1−n

n − 1
=

λ2 ln 2

16π2 sin2 θi
· (22)

As 1 − n < 0, in grazing incidence the (2/λ)1−n term can be
neglected with respect to f 1−n

0 . By isolating the frequency f0 and
using Eq. (20) to derive H(λ), we obtain after some algebra, for
the scattering term of the HEW,

H(λ) = 2

[
16π2Kn

(n − 1) ln 2

] 1
n−1

(
sin θi
λ

) 3−n
n−1

. (23)

Fig. 2. Dependence of the spectral exponents for different indexes n of a
power-law PSD, for a single-reflection focusing mirror. In the forbidden
region (n > 3) γ would be negative.

this equation states that:

1. The H(λ) function for a power-law PSD has a power-law
dependence on the photon energy E ∝ 1/λ, i.e., H(E) ∝ Eγ.
The power-law index γ is related to the PSD power-law index
n through the simple equation:

γ =
3 − n
n − 1

· (24)

As 1 < n < 3, γ is positive, i.e. H is an increasing function
of the photon energy. For a fixed value of Kn, the HEW di-
verges quickly for n ≈ 1 but very slowly for n ≈ 3: a PSD
power-law index close to 2–3 would hence be preferable in
order to reduce the degradation of focusing performances for
increasing energies.

2. H(λ) depends on the sine of the incidence angle at the γth
power. In other words, the HEW depends only on the ratio
sin θi/λ: this scaling relation shows that for a given power-
law PSD (with n < 3) at a given photon wavelength λ we can
reduce the HEW by decreasing the incidence angle.

3. H(λ) increases with the PSD normalization Kn, as expected:
the dependence is also a power law with spectral index

β =
1

n − 1
· (25)

As for γ(n), the closeness of n to the maximum allowed value
for fractal surfaces makes less severe the roughness effect on
imaging degradation.

The functions β and γ are plotted in Fig. 2. For instance, if n = 2,
γ = β = 1, and H(E) increases linearly with both photon energy
and Kn coefficient. The divergence of indexes β, γ for n ≈ 1
makes apparent the importance of obtaining steep PSDs in the
optical polishing of X-ray mirrors. Finally, it is worth noting that
for n > 3 there is the theoretical possibility of a slight decrease
of H(E) for increasing energy because γ(n) becomes negative.

To clarify the dependence of the HEW on the power-law
index n and the incidence angle, we depict in Figs. 3 and 4
some examples of H(E) simulations (single reflection) for some
power-law PSDs in the photon energy range 0.1–50 keV. The
H(E) curves were computed using Eq. (23). In Fig. 3 the inci-
dence angle θi is fixed at 0.5 deg and the index n is variable; a
constant n = 1.8 and a variable θi is instead assumed in the sim-
ulations of Fig. 4. Note in Fig. 3 the slower H(E) increase for
larger n and the common intersection point, determined by the
particular choice of the incidence angle and the σ = 4 Å value
in the window of spatial wavelengths [100 ÷ 0.01 µm].
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Fig. 3. H(E) simulations assuming power-law PSDs with constant
σ = 4 Å in the spatial wavelengths range [100 ÷ 0.01 µm], but vari-
able power-law index n. The incidence angle is fixed at θi = 0.5 deg.

Fig. 4. H(E) simulations assuming a power-law PSD with power-law
index n = 1.8 and with σ = 4 Å in the spatial wavelengths range [100 ÷
0.01 µm], but variable incidence angle θi.

5. Numerical integration of the PSD

A power-law PSD is a modelization that can be used for
optically-polished surfaces. If the polishing process is not op-
timized or a reflecting layer is grown onto a optically polished
substrate, several deviations from a power-law trend can be ob-
served. A typical “bump”, for instance, can be present in the PSD
of multilayer coatings, often in the range of spatial wavelengths
[10 ÷ 0.1 µm], as a result of the replication of the substrate
topography and of fluctuations intrinsically related to the ran-
dom deposition process (Spiller et al. 1993; Stearns et al. 1998).
If the PSD deviates significantly from a power-law, Eq. (23)
cannot be used. However, if the surface PSD has been exten-
sively measured over a wide range of spatial frequencies [ fm, fM]
(wide enough to have fm < f0(λ) for all λ), the HEW scattering
term H(λ) can be computed by numerical integration (Eqs. (19)
and (20)), on condition that the following approximation is valid:

∫ 2
λ

f0

P( f ) d f ≈
∫ fM

f0

P( f ) d f . (26)

The condition above is usually satisfied when f0 � fM i.e. when
the following inequality holds:

H(λ) � 2λ fM
sin θi

· (27)

As we are also interested in computing H(λ) in hard X-rays
(small λ), there is the possibility that the two integrals in Eq. (26)

differ by a significant factor. In this case the integral can be cor-
rected by adding the remaining term

∫ 2
λ

f0

P( f ) d f =
∫ fM

f0

P( f ) d f +
∫ 2

λ

fM

P( f ) d f , (28)

that can be evaluated, in principle, by measuring the mirror re-
flectivity within an angular acceptance corresponding to the spa-
tial frequency fM, and using the Debye-Waller formula to de-
rive σ2; then, the importance of measuring the PSD in a very
wide frequencies interval becomes apparent. The value of f0 de-
pends strongly on both incidence angle and photon energy: for
soft X-rays (<10 keV) and very small angles (<0.2 deg) the char-
acteristic spatial wavelength l̂ = 1/ f0 often falls in the millimeter
or centimeter range.

It should be noted that, if the detector is small, a fraction of
the scattered photons can be lost; to account for the finite an-
gular radius of the detector d (as seen from the optic principal
plane), one should integrate the PSD over the smaller interval
[ f0, d sin θi/λ] to recover the measured H(λ) trend. As an alter-
native method, one can compare the theoretical predictions of
Eqs. (19) and (20) with the experimental H(λ) values, as calcu-
lated from the Encircled Energy normalized to the photon count
foreseen by the Fresnel equations (i.e. with zero roughness),
rather than to the maximum of the measured Encircled Energy
function.

6. Computation of the PSD from the H(λ) trend

If the approach described above can be used to simulate the
HEW trend from a measured surface PSD, the reverse problem,
i.e. the derivation of surface PSD from the measured HEW trend
is also possible. This requires that the figure error contribution
had been reliably measured, in order to isolate the scattering
term function H(λ) using Eq. (6).

This problem is interesting for three reasons at least:

1. it is a quick, non-destructive surface characterization method
in terms of its PSD.

2. The measurement is extended to a large portion of the illu-
minated optic, hence local surface features are averaged and
ruled out from the PSD.

3. For a given HEW(λ) requirement in the telescope sensitiv-
ity energy band, it allows establishing the maximum allowed
PSD.

In order to find an analytical expression for the PSD, we note
that the spatial frequency f0 that scatters at an angular distance
H/2 from the specular beam is a function only of λ, along with
Eq. (20). Solving for f0, we have

f0(λ) ≈ H(λ)
sin θi
2λ
· (29)

We suppose that all scattered photons are collected, so we can
assume Eq. (19) as valid. By deriving both sides of Eq. (19) with
respect to λ, we have

d
dλ

⎛⎜⎜⎜⎜⎜⎝
∫ 2

λ

f0

P( f ) d f

⎞⎟⎟⎟⎟⎟⎠ = ln 2

8π2 sin2 θi
λ, (30)

that is,

− 2
λ2

P

(
2
λ

)
− d f0

dλ
P( f0) =

ln 2

8π2 sin2 θi
λ, (31)
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and, using Eq. (29) to compute the derivative of f0:

− 2
λ

P
(

2
λ

)
+ f0P( f0)

λ
− sin θi

2λ
dH(λ)

dλ
P( f0) =

ln 2

8π2 sin2 θi
λ. (32)

Now remember that, in grazing incidence, f0 � 2λ−1 by several
orders of magnitude. Even if P( f ) is not a power-law, it is always
a steeply decreasing function of f . Moreover, it should have over
[ f0, 2λ−1] an average PSD index ñ > 1, for the reasons explained
in Sect. 4. This means that

P( f0)
P(2λ−1)

≈
(

2λ−1

f0

)ñ

� 2λ−1

f0
, (33)

therefore, in practical cases the 2λ−1P(2λ−1) term in Eq. (32) is
negligible with respect to f0P( f0). Consequently, we can neglect
the first term of Eq. (31): then we have

−d f0
dλ

P( f0) ≈ ln 2

8π2 sin2 θi
λ. (34)

Combining this with Eq. (29) and collecting the constants, we
obtain the final result

P( f0)
λ

d
dλ

(
H(λ)
λ

)
+

ln 2

4π2 sin3 θi
≈ 0. (35)

Equation (35) enables the computation of the PSD (at the spatial
frequency given by Eq. (29)) along with the derivative of the
ratio H(λ)/λ with respect to λ.

The obtained equation shows that P( f ) is inversely propor-
tional to the derivative of H(λ)/λ. This result seems strange at
first glance, because by decreasing H(λ) one would obtain a
larger P( f ) (a rougher surface). One should remember, indeed,
that by reducing H(λ) we increase P( f0), but f0 is shifted to-
wards the low frequencies domain, where P( f0) is expected to
be higher. In fact, the “rough” or “smooth” feature of the surface
depends on whether f0 or P( f0) varies more rapidly, i.e. on the
overall H(λ) trend.

We can also check the correctness of Eq. (35) by computing
the PSD for the particular case of the H(λ) derived from the in-
tegration of a power-law PSD (Eq. (23), derived under the same
approximation, Eq. (33)). If the results are correct, the substitu-
tion of the HEW trend of Eq. (23) in Eq. (35) should return the
original PSD (Eq. (21)). The straightforward, but lengthy calcu-
lation (carried out in Appendix B) shows that the substitution
returns

P( f0) =
Kn

f n
0

(36)

as expected.
Equation (35) should be approximately valid also for graded

multilayers with a slowly-decreasing reflectivity (see Sect. 3.2),
however, due to the approximations needed to extend Eq. (19) to
the multilayers, the resulting PSD should be considered a “first
guess” in this case. Then, the matching of the PSD to the re-
quired HEW trend should be checked by means of a detailed
computation of the XRS PSF(λ).

7. Extension to X-ray mirrors with multiple
reflections

The formalism exposed in the previous sections can be extended
to a double-reflection optic (like a Wolter-I one). In this op-
tical configuration, photons are firstly reflected by a parabolic

surface and subsequently by a hyperbolic one. If the smooth-
surface condition is satisfied, multiple scattering is often negli-
gible (Willingale 1988) and the scattering diagrams of the two
reflecting surfaces can be simply summed (De Korte et al. 1981;
Stearns et al. 1998). The source is assumed to be at infinite dis-
tance, then X-rays impinge on the two surfaces at the same an-
gle θi. If the surface PSDs are the same for both reflections, the
scattering diagram will be simply doubled. Thus, the integrated
scattered intensity is also doubled:

Is = 2I0R2
F

[
1 − exp

(
−16π2σ2 sin2 θi

λ2

)]
· (37)

The RF factor is squared in Eq. (37) because each ray is re-
flected twice: in absence of scattering the reflected power would
be I0R2

F, so the half-power scattering angle condition reads

I

[
|θs − θi| > H(λ)

2

]
=

1
2

I0R2
F, (38)

and, combining Eqs. (37) and (38), we obtain

exp

(
−16π2σ2 sin2 θi

λ2

)
=

3
4
· (39)

Solving for σ2, and using Eq. (16),

∫ 2
λ

f0

P( f ) d f =
λ2 ln(4/3)

16π2 sin2 θi
, (40)

that differs from Eq. (19) only in the factor ln(4/3) instead of ln 2
on right-hand side. Consequently, the corresponding differential
equation is

P( f0)
λ

d
dλ

(
H(λ)
λ

)
+

ln(4/3)

4π2 sin3 θi
≈ 0. (41)

Similar equations can be derived for an optical system with an
arbitrary number of reflections N: to compute the H(λ) from the
PSD,

∫ 2
λ

f0

P( f ) d f =
λ2

16π2 sin2 θi
ln

(
2N

2N − 1

)
· (42)

If the PSD is a power-law P( f ) = Kn/ f n we can generalize
Eq. (23):

H(λ) = 2

[
ln

(
2N

2N − 1

)] 1
1−n

[
16π2Kn

(n − 1)

] 1
n−1

(
sin θi
λ

) 3−n
n−1

, (43)

note the divergence of the logaritmic factor for increasing N,
due to the negative exponent 1/(1 − n). This indicates that H(λ)
increases rapidly with the number of reflections, as expected.

Finally, we can also generalize the differential Eq. (35) to an
arbitrary number of reflections,

P( f0)
λ

d
dλ

(
H(λ)
λ

)
+

ln
(

2N
2N−1

)
4π2 sin3 θi

≈ 0. (44)

In Eqs. (42) and (44), f0 is always related to H(λ) by Eq. (29).
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Fig. 5. an hypothetical PSD with reasonable values and a PSD break
around a 100 µm spatial wavelength (dashed line). This PSD is adopted
to compute the corresponding HEW trends for 1, 2, 3 reflections at a
0.3 deg grazing incidence angle (Fig. 6). The achieved HEW trends
were used to re-calculate the respective PSDs (solid line). For clarity,
we do not plot the single PSDs, but just their overlap.

8. An example

As an application of the equations reported above, we shall make
use of a simulated surface PSD with reasonable values, that
is not a power-law. The PSD (see Fig. 5, dashed line) is ex-
tended from 105 µm down to a 0.01 µm spatial wavelength, with
a break around 100 µm: at the lowest frequencies the PSD is
steep (n ≈ 2.3), whereas at the largest frequencies it is smoother
(n ≈ 1.3). From the discussion in Sect. 4 concerning the relation
between the exponents of the PSD and the HEW (Eq. (24)), we
should expect that the PSD break causes a slope change in the
function H(λ): however, as the actual PSD is not a power-law,
the H(λ) function should be computed by means of Eqs. (20)
and (42). Before carrying out the integration, we can remark
qualitatively that, as we increase the photon energy, the highest
frequencies in the PSD (where the PSD index becomes smaller)
become important; hence, we can expect a steeper increase of
the HEW at the highest energies.

The analysis is made quantitative in Fig. 6, where we show
the calculated HEW trends from the PSD in Fig. 5 (the dashed
line) by means of Eqs. (20) and (42), assuming 1, 2, 3 reflections
at the same grazing incidence angle (0.3 deg). The approxima-
tion of Eq. (26) was adopted. In addition to the scattering term,
15 arcsec of HEW due to figure errors were added in quadrature.
The HEW increases slowly (concave downwards) at low ener-
gies, corresponding to a frequency f0 in the steeper part of the
PSD. Then it increases more steeply (concave upwards) when
the energy becomes large enough to set f0 in the portion of the
spectrum with n ≈ 1.3. By increasing the number of reflections,
the HEW values also increase, and the “turning point” where the
HEW starts to diverge (arrows in Fig. 6) shifts at lower X-ray
energies. All the calculation is based on the assumption that the
contribution of the PSD over the maximum measured frequency
fM = 0.01 µm is negligible. Otherwise, the computed HEW val-
ues will be underestimated (see Sect. 5).

In addition to the general trend of the HEW, there are oscil-
lations due to small irregularities in the adopted PSD: the cal-
culation is, in fact, very sensitive to small variations of the PSD
values. Notice that for a definite energy all the frequencies larger
than f0 contribute to the HEW value, even if the largest contri-
bution comes from frequencies near f0: this is a consequence of
the steeply decreasing trend of the PSD.

We checked the reversibility of the result by computing
the PSD from the HEW trends (after subtracting in quadrature

Fig. 6. the HEW trend computed from the PSD for 1, 2, 3 reflections,
plus 15 arcsec of HEW due to figure errors. The HEW trends were used
to compute back the PSD (the solid line in Fig. 5) to verify the re-
versibility of the calculation. The energy at which the concavity change
takes place is also indicated (arrows).

15 arcsec figure error) by means of Eq. (44) with the respec-
tive value of N. The resulting PSDs (the solid line in Fig. 5)
were overplotted to the initial PSD, with a perfect superposition.
Each obtained PSD has, indeed, an extent of spatial frequencies
smaller than the initial one: the overall PSD ranges from 104

to 11 µm (vs. the initial 105 ÷ 0.01 µm), and the smaller wave-
lengths could be computed from the HEW trend with N = 3. The
limitation in spatial frequency ranges occurs for two reasons:

1. small f − large l̂: all the power scattered by the lowest fre-
quencies is found at angles less than 1/2 HEW even for the
lowest energies being considered: therefore, that part of the
spectrum is not necessary to compute the HEW in the energy
range of interest;

2. large f − small l̂: the PSD is computed from a derivative,
therefore the information concerning the absolute magnitude
of the HEW is substantially lost. This information was in-
cluded in the integral of the PSD (Eq. (42)) for the maximum
considered energy.

Therefore, from the integral in Eq. (42) we cannot recover the
PSD over the minimum computed spatial wavelength (11 µm,
using the HEW trend with N = 3), but we can at least calcu-
late the value of σ at spatial wavelengths smaller than 11 µm.
Substituting the incidence angle and the minimum photon wave-
length being considered (λ = 0.24 Å) in Eq. (42) with N = 3
and with the approximation of Eq. (26), we obtain σ = 1.6 Å,
in perfect agreement with the value computed from the original
PSD.

Summing up, for a given incidence angle the H(λ) function
in a definite photon energy range is equivalent to the PSD in
a corresponding range of spatial frequencies f (or equivalently,
spatial wavelengths l̂), plus the integral of the PSD beyond the
maximum frequency being computed. Therefore, requirements
of a definite HEW(λ) function in designing an X-ray optical sys-
tem can be translated in terms of PSD in a frequencies range
[ fmin, fmax] plus the surface rms at frequencies beyond fmax. The
usefulness of such a relationship is apparent.

9. Conclusions

In the previous pages we have developed useful equations to
compute the contribution of the X-ray scattering to the HEW of
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a grazing incidence X-ray optic, by means of a simple integra-
tion. The formalism has been inverted in order to derive the PSD
of the surface from the function H(λ), and it can be extended
to an arbitrary number of reflections at the same incidence an-
gle. The equations are valid for a single-layer coating mirror, but
they can be approximately applied to a multilayer-coated mir-
ror. This approach is particularly useful in order to establish the
surface finishing level needed to keep the X-ray scattering HEW
of X-ray optics within the limits fixed by the X-ray telescope
requirements.

It should be remarked that the reasoning was developed for
the Half-Energy Width, but it can be extended to any angular
diameter including a fraction η of the energy spread around the
focal point. To do this, it is sufficient to substitute the logarithmic
factors in Eqs. (42), (43), (44),

ln

(
2N

2N − 1

)
→ ln

(
N

N − 1 + η

)
, (45)

and for instance, to compute the 90% – energy diameter for a
double reflection mirror, simply substitute η = 0.9 and N = 2.
The proof is straightforward: however, one should always keep
in mind that the energy diameters computed with this method
can be considered valid only if they are much smaller than the
incidence angle θi.

Notice that in the development of the exposed formalism we
have supposed, in addition to the smooth-surface condition, two
additional hypotheses:

1. the source is at infinite distance from the mirror;
2. the X-ray detector is large enough to collect all the scattered

photons.

In order to apply the mentioned equations to experimen-
tal calibrations of X-ray optics at existing facilities (like
MPE-PANTER), where the source is at a finite distance and the
detector has a finite size, some corrections should be taken into
account. We will deal with their quantification in a subsequent
paper.
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Appendix A: Extension to multilayer coatings

Here we provide with a plausibility argument to extend the for-
malism of Sect. 3.1 to mirror shells with multilayer coatings (see
Sect. 3.2). The intensity of a scattered wave at each interface is
proportional to its PSD as per Eq. (11), and the overall scattering
diagram will be their coherent interference. To simplify the no-
tation, we neglect the X-ray refraction and we suppose that the
incidence angle is beyond the critical angles of the multilayer
components. The electric field scattered by the kth interface can
be written as

Ek = E0TkrkXk( f ) exp(−iφk), (A.1)

where rk is the single-boundary amplitude reflectivity, E0 the
incident electric field amplitude, the weights Tk are the rel-
ative amplitudes of the electric field in the stack (in scalar,
single-scattering approximation), and account for the extinction
of the incident X-rays due to gradual reflection and absorption.
Xk( f ) is the single-boundary scattering power (proportional to

the PSD( f ) amplitude), and φk is the phase of the scattered wave
at θs by the kth interface

φk = 2π
sin θi + sin θs

λ
zk, (A.2)

where zk is the depth of the kth interface with respect to the outer
surface of the multilayer. Now, the measured intensity is

|Escatt|2 =
∣∣∣∣∣∣∣

N∑
k=0

Ek

∣∣∣∣∣∣∣
2

= |E0|2|Xk( f )|2
∣∣∣∣∣∣∣

N∑
k=0

rkTk exp(−iφk)

∣∣∣∣∣∣∣
2

. (A.3)

Now, |E0|2 = I0, the incident X-ray flux intensity, and |Xk( f )|2
is proportional to the interfacial PSD P( f ), which is indepen-
dent of k by hypothesis. Assuming the proportionality factor of
Eq. (11) for |Xk( f )|2, we obtain for the scattering diagram

1
I0

dIs

dθs
=

16π2

λ3
sin3 θiP( f )

∣∣∣∣∣∣∣
N∑

k=0

rkTk exp(−iφk)

∣∣∣∣∣∣∣
2

(A.4)

and if we set

Kλ(θi, θs) =

∣∣∣∣∣∣∣
N∑

k=0

rkTk exp(−iφk)

∣∣∣∣∣∣∣
2

, (A.5)

Eq. (A.4) becomes analogous to Eq. (11), with Kλ(θi, θs) playing
the role of RF. Note that Kλ(θi, θi) = Rλ(θi), the multilayer reflec-
tivity in single reflection approximation. As before, we write the
scattering diagram for a mirror with axial symmetry as a func-
tion of the angular distance from the focus α = |θi−θs| averaging
the contributions of negative and positive frequencies

1
I0

dIs

dθs
=

8π2

λ3
sin3 θiP( f )[Kλ(θi, θi − α) + Kλ(θi, θi + α)]. (A.6)

For a single reflection optic, we can calculate the scattered power
over H/2, where H is the scattering term of optic Half-Energy
Width:

Is[α > H/2] =
1
2

I0Rλ(θi). (A.7)

Now, the steps 18 and 19 can be repeated:

∫ 2
λ

f0

Kλ(θi, θi + α) + Kλ(θi, θi − α)
Rλ(θi)

P( f ) d f =
λ2 ln 2

8π2 sin2 θi
(A.8)

where f0 is still defined by Eq. (20). For small scattering angles
(α � θi), since we assumed a slow variation of Rλ over angular
scales of H/2 (and the same occurs for Kλ), we can approximate

Kλ(θi, θi ± α) ≈ Rλ(θi) ± α ∂Kλ(θi, θs)
∂θs

∣∣∣∣∣
θs=θi

· (A.9)

Substituting in Eq. (A.8), we obtain

∫ 2
λ

f0

P( f ) d f ≈ λ2 ln 2

16π2 sin2 θi
(A.10)

because the two derivatives have opposite sign and cancel out.
This is the same equation found for the case of a single-layer
coating (Eq. (19)).
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Appendix B: Derivation of the PSD from the HEW
for a fractal surface (single reflection)

We recall here the H(λ) trend for a power-law PSD (Eq. (23)):

H(λ) = 2

[
16π2Kn

(n − 1) ln 2

] 1
n−1

(
sin θi
λ

) 3−n
n−1

(B.1)

we verify that it returns a power-law PSD if substituted in the
differential Eq. (35):

P( f0)
λ

d
dλ

(
H(λ)
λ

)
+

ln 2

4π2 sin3 θi
= 0. (B.2)

To simplify the notation, we write simply H instead of H(λ): by
carrying out the derivation,

1
λ

d
dλ

(H
λ

)
= − 4

n − 1

[
16π2Kn

(n − 1) ln 2

] 1
n−1

(sin θi)
3−n
n−1 λ

n−3
n−1−3. (B.3)

Using again Eq. (B.1):

1
λ

d
dλ

(H
λ

)
= − 2H

n − 1
λ−3 (B.4)

hence, the related PSD is

P( f0) = − ln 2

4π2 sin3 θi

[
1
λ

d
dλ

(H
λ

)]−1

=
λ3 ln 2

4π2H sin3 θi

n − 1
2
· (B.5)

Now, we can derive (n − 1)/2 from Eq. (B.1),

n − 1
2
=

4π2HKn

ln 2

(H
2

)−n (
sin θi
λ

)3−n

(B.6)

and combining Eqs. (B.5)–(B.6), one obtains

P( f0) = Kn

(
H sin θi

2λ

)−n

, (B.7)

that is, by recalling Eq. (29),

P( f0) =
Kn

f n
0

(B.8)

i.e., the expected power-law PSD.
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