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SGRs and AXPs X-ray Spectra 

• 0.5 – 10 keV persistent emission well represented by a 

blackbody plus a power law 

• kTBB ~ 0.5 keV, does not change much in different sources 

• Photon index Г ≈ 1 – 4, AXPs tend to be softer 

• SGRs and AXPs are variable (days/months; much more 

dramatic in “transients”) 

• Variability mostly associated with the non-thermal 

component 

• Transient spectra can be BB+BB, TBB and RBB decrease 

in time 

 

 

CNOC IX, 22-25 September 2015 



XMM Epic-pn data (Rea el al. 2008) 

SGR 1806-20 at different epochs  
(BB+PL) 

AXP 1E 2259-586 (BB+PL) 

Transient AXP XTE 1810-197 at  
different epochs (BB+BB) 
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Hard X-ray Emission 

Mereghetti et al (2006) 
INTEGRAL revealed  
substantial emission in  
the 20 -100 keV band  
from SGRs and AXPs 

Hard power law tails  
with Г ≈ 1-3, hardening 
wrt soft X-ray emission 
required in AXPs  

Hard emission highly pulsed 
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Twisted Magnetospheres 

• The magnetic field inside a magnetar is “wound 
up” 

• Magnetic stresses deform/rupture the crust 

• The external field twists up (Thompson, Lyutikov & Kulkarni 2002) 

Thompson & Duncan (2001) 
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Magnetospheric Currents 
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Contrary to PSRs, currents flow (also) along the  

closed field lines and j ≫ jGJ 



Resonant Compton Scattering 

• The current flowing along the closed field lines is 

 

 

• The optical depth for Thomson scattering is low, 

τT  neTr  10-4 

• Contrary to a non-magnetized medium, magnetic 

scattering is energy- and mode-dependent 

• Resonances at the cyclotron harmonics 
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At resonance   105 T  large optical depth to resonant  
cyclotron scattering (RCS) 
Repeated scatterings lead to the formation of a power-law tail 

because D = D(r,) and rcurrent > RNS 

Spectral formation in twisted magnetospheres investigated  

quite in detail using Montecarlo methods (Lyutikov & Gavriil  

2006; Fernandez & Thompson 2007; Nobili, Turolla & Zane 2008a, b) 

Non Rel 
γ=1.15 

Rel 
γ=1.15 



Zane et al. (2009) 

RCS models quite successful in explaining magnetars soft X-ray spectra  

(~ 0.5 – 10 keV) and also high-energy tails (no spectral break, SGRs) 

 

Spectral fits provide information on the physical state of the star/magnetosphere 

(twist angle, charge velocity, surface temperature, etc)  
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 Unidirectional electron flow !  
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Magnetospheric Currents - II 
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The twist must decay to support its own currents. A 

parallel electric field develops which accelerates the 

charges along the flux tube (Beloborodov & Thompson 2007; 

Beloborodov 2009) 

A potential drop Φ is maintained between the footpoints 

j = j(Φ) depends on the nature of the discharge and this  

fixes the duration of the twist 

The electric field is self-regulated to ensure that the  

required current flows in the circuit 
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Φ (and E‖) must be huge (≈1012 GeV) in order to produce jB:  

γe ≈ 109 and the twist decays immediately  
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Where B > 2BQ, 1 keV photons scatter onto γ > 1000 electrons 

Scattered photons have energy ε’ in the MeV range and initially  

propagate along B 

They quickly convert into pairs via 

BeeB  

as soon as 
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Pair production along the circuit screens  

the potential: jB can be conducted with  

Φ ≪ ΦDL 

 Bidirectional pair flow !  
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Beloborodov (2013b) 

pair creation  

Slow-down by  

radiative drag  

pair annhilation  

Hascoët et al. (2014) 

Pairs are still rather fast 

All right to explain the hard tails 
Needs another component to account 
for the soft X-rays  



Transient Magnetars 

• Sudden increase ( hrs) of the persistent flux ( 10-1000 

over quiescent level) 

• Emission of bursts 

• Outbust duration months/years 

• X-ray spectrum is often thermal (BB+BB, kT ~ 0.3 – 0.9 

keV) 

• Small emitting area (RBB < 1 km) which shrinks and cools 

as the outburst declines 

• All magnetars discovered in the last 10 yrs are transients 

(exception is  CXOU J171405.7-381031), including the 2 

(3?) “low-field” sources 
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Rea & Esposito (2011) 

Albano et al. (2010) 

 XTE J1810-179 



Outbust Models 

CNOC IX, 22-25 September 2015 

Heating produced by energy deposition in a limited  

region of the star surface 

Deep crustal heating 
(Lyubarsky et al. 2002; 

Rea & Pons 2012) 

• 1040 < E < 1043 erg 

• kTmax ~ 0.5 keV 

• nearly constant radius 

Surface heating by  

backflowing currents  
(Beloborodov 2009) 

• as the twist decays the j-bundle 

shrinks 

• L ~ R2 sin4 
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Deep crustal heating (a la Pons & Rea) 
  

• Ok for the early decay of Swift J1822.3-1606  (< 250 d; Rea et al. 2012) 

• Overpredicts the flux at later times (SGR 0418+5729, Rea et al. 2013; SGR 

0418+5729, Rodriguez et al. 2014; Swift J1834.9-0846, Esposito et al. 2013) 

• No variation of the size of the emitting region, as observed in several sources 

(e.g. XTE J1810-179) 

Current heating (a la Beloborodov) 
  

• Ok for XTE J1810-179 

• Luminosity too low to explain sources with B < 1014 G if twist extent consistent 

with observed emitting area (SGR 0501+4516, SGR 0418+5729; Rea et al., 2009, 

2013)  

• No clear observational indication of L ~ A2 during the decay 



The “Low-Field” Magnetars 

• Three peculiar magnetar candidates discovered 

since 2009: SGR 0418+5729 (van der Horst et al. 2010, 

Esposito et al. 2010, Rea et al. 2010), Swift J1822.3−1606 

(Rea et al. 2012, Scholz et al. 2012) and 3XMM 

J1852+0033 (Rea et al. 2014) 

• All the features of a (transient) magnetar 

• Rapid, large flux increase and decay 

• Emission of bursts 

• P ≈ 8-11 s, Ṗ < 10-13 s/s,  

• B < 4x1013 G (B = 6x1012 G in SGR 0418+5729)  
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Neutron Star Evolution 

• Rotational evolution 

 

• Thermal evolution  

 

 

 

 

• Magnetic evolution   
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Magneto-thermal Evolution 
(Pons, Miralles & Geppert 2009; Viganò et al. 2013) 

Faraday induction equation 

η is the magnetic diffusivity and strongly depends on T 

Coupled thermal and magnetic evolution ! 
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Magneto-thermal Evolution 
(Pons, Miralles & Geppert 2009; Viganò et al. 2013) 

Faraday induction equation 

η is the magnetic diffusivity and strongly depends on T 

Coupled thermal and magnetic evolution ! 

Viganò et al. (2013) 
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SGR 0418 (Turolla et al. 2011)) SGR 1822 (Rea et al. 2012) 

“Low-field” sources look indeed oldish ( 106 yr) magnetars  
in which the surface magnetic field substantially decaied  

Are low-field sources old ? 
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Bursts & Flares 

• Short bursts 

• t ~ 0.1 – 1 s, L ~ 1039 – 1041 erg/s , 

thermal spectrum (kT ~ 10 keV), seen 

in both SGRs and AXPs 

• Intermediate bursts 

• t ~ 1 – 40 s, L ~ 1041 – 1043 erg/s , 

thermal spectrum, seen in both SGRs 

and AXPs 

• Giant flares 

• only three observed, each from a 

different SRG, L ~ 1044 – 1047 erg/s, 

initial spike (~ 0.1s) + pulsating tail     

(~ 100 s)  

SGR 0501+4516 

SGR 1900+14 
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Burst Trigger Mechanism(s) 

Rapid magnetic field reconfiguration is a key ingredient,  

but no precise model as yet 

 

Secular magnetic evolution builds stresses that are released  

catastrophically in the bursts 

Alvén speed 

 

Shear velocity 
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• Magnetic evolution leads to an unstable configuration in 

the core  MHD instabilities with growth time  R/vA  0.1 

s  

• Magnetic stresses rupture the crust  release of elastic 

energy over a timescale  R/vs  0.3 s 

• Core and crust evolve smoothly, stresses are released in 

the magnetosphere via plasma instabilities/magnetic 

reconnection  very short timescale, < 0.01 s (vA ~ c) 

 
All three scenarios provide timescales in rough agreement  

with burst duration/rise time 

 

Correct energetics (including giant flares)  
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Burst Emission 

• Magnetic reconfiguration produces particle acceleration 

• Electrons moving along the curved field lines emit -rays 

which drive a pair cascade 

• The pair plasma is confined by the magnetic field if  

 

 

• Confinement leads to an optically thick  “fireball” 

• Radiation escapes preferentially in the X-mode, due to the 

much reduced opacity 
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No detailed model for burst emission available as yet  
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Future Developments 

• Further support to the magnetar model: search for 
cyclotron line in other sources (preliminary results 
promising) 

• Twisted magnetosphere model in general agreement 
with observations; hard vs soft power-laws 

• Nustar (and ASTRO-H) 
• More detailed modeling of magnetospheric currents 

• Magnetar emission polarized: polarization measures 
key 

• Only a general picture for the burst emission: need a 
quantitative model to compare with observations 

• Extragalactic magnetars: relation with (long) GRBs ? 
• The neutron star zoo: evolutionary links among 
different classes 
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An artist impression of SGR 0418 
with the ejected magnetic loop  

An addendum to Andrea’s talk 

Of course, reality is a trifle more  
complicated… 

CNOC IX, 22-25 September 2015 


