POLARIZATION OF NEUTRON STAR SURFACE EMISSION – WHAT DO WE ACTUALLY MEASURE?

Roberto Taverna
(Dept. of Physics and Astronomy – University of Padova)
Robert Turolla, Silvia Zane
Denis Gonzalez Canitilef
Fabio Muleri, Paolo Soffitta
Outline

- Geometrical effects
- Vacuum polarization effects
- Results
- Conclusions
Geometrical effects
Photon polarization modes

- Due to strong magnetic fields, photons emitted by the NS surface are expected to be linearly polarized in the X- or O-modes

Local frame \((x, y, z)\):

- \(\hat{z}\) axis aligned with the photon propagation direction \(\hat{k}\)
- \(\hat{x}\) axis perpendicular to the k-B plane
- \(\hat{y} = \hat{k} \times \hat{x}\)

\[
E = A(z)e^{i(k_0z - \omega t)}
\]

\[
A = (A_x, A_y) = (a_x e^{-i\varphi_x}, a_y e^{-i\varphi_y})
\]
Due to strong magnetic fields, photons emitted by the NS surface are expected to be linearly polarized in the X- or O-modes.

Electric field for X-mode photons oscillates along \hat{x}

Electric field for O-mode photons oscillates along \hat{y}
Stokes parameters

- A convenient way to describe polarized radiation is through the Stokes parameters (that are additive):

\[
\begin{align*}
J &= A_x A_x^* + A_y A_y^* = a_x^2 + a_y^2 \\
Q &= A_x A_x^* - A_y A_y^* = a_x^2 - a_y^2 \\
U &= A_x A_y^* + A_y A_x^* = 2a_x a_y \cos(\varphi_x - \varphi_y) \\
V &= i(A_x A_y^* - A_y A_x^*) = 2a_x a_y \sin(\varphi_x - \varphi_y)
\end{align*}
\]

- Normalizing to the total intensity:

\[
\begin{pmatrix}
\overline{Q} \\
\overline{U} \\
\overline{V}
\end{pmatrix}_x =
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
\quad
\begin{pmatrix}
\overline{Q} \\
\overline{U} \\
\overline{V}
\end{pmatrix}_o =
\begin{pmatrix}
-1 \\
0 \\
0
\end{pmatrix}
\]
Stokes parameters rotation

- The local frame \((x, y, z)\) is in general different for each photon
The local frame \((x, y, z)\) is in general different for each photon.

Stokes parameters rotation

Geometry

Vacuum polarization

Results

Conclusions
Stokes parameters rotation

Polarimeter frame \((u, v, w)\):

- \(\hat{w}\) axis aligned with the photon propagation direction \(\hat{k}\) (LOS)
- \(\hat{u}\) and \(\hat{v}\) axes arbitrarily chosen in the plane perpendicular to \(\hat{w}\)
Polarimeter frame \((u, v, w)\):

- \(\hat{w}\) axis aligned with the photon propagation direction \(\hat{k}\) (LOS)

- \(\hat{u}\) and \(\hat{v}\) axes arbitrarily chosen in the plane perpendicular to \(\hat{w}\)

- the local frames \((x', y', z')\) and \((x'', y'', z'')\) have to be rotated by the angles

\[
\alpha' = \hat{u} \cdot \hat{x}'
\]
\[
\alpha'' = \hat{u} \cdot \hat{x}''
\]
Stokes parameters rotation

- The local frame \((x, y, z)\) is in general different for each photon.

- Under a rotation by an angle \(\alpha_i\) the Stokes parameters transform as:

 \[
 I_i = \bar{I}_i \quad Q_i = \bar{Q}_i \cos(2\alpha_i) + \bar{U}_i \sin(2\alpha_i) \\
 V_i = \bar{V}_i \quad U_i = \bar{U}_i \cos(2\alpha_i) - \bar{Q}_i \sin(2\alpha_i)
 \]

- Hence the Stokes parameters associated to the whole radiation are given by:

 \[
 Q = \Sigma_i^N \cos(2\alpha_i) - \Sigma_i^O \cos(2\alpha_i) \quad U = \Sigma_i^O \sin(2\alpha_i) - \Sigma_i^N \sin(2\alpha_i)
 \]
Polarization observables

- The polarization properties of NS thermal emission can be described by polarization fraction and polarization angle

\[
\Pi_L = \frac{\sqrt{Q^2 + U^2}}{I}
\]

\[
\chi_p = \frac{1}{2} \arctan \left(\frac{U}{Q} \right)
\]

At the surface

\[
\Pi^0_L = \frac{|N_X - N_O|}{N}
\]
Polarization observables

- The polarization properties of NS thermal emission can be described by polarization fraction and polarization angle.

- By substituting the expression of Q and U for the whole radiation one obtains:

$$\Pi_L = \frac{1}{N} \left[N + 2 \Sigma_i^N \Sigma_k^{N_x} \cos \left(2\alpha_i - 2\alpha_k \right) + 2 \Sigma_j^N \Sigma_r^{N_o} \cos \left(2\alpha_j - 2\alpha_r \right) \right]^{1/2}$$

$$\chi_p = \frac{1}{2} \text{arctan} \left[- \frac{\Sigma_i^N \sin(2\alpha_i) - \Sigma_j^N \sin(2\alpha_j)}{\Sigma_i^N \cos(2\alpha_i) - \Sigma_j^N \cos(2\alpha_j)} \right]$$
Polarization observables

- The polarization properties of NS thermal emission can be described by polarization fraction and polarization angle.

- By substituting the expression of Q and U for the whole radiation one obtains:

$$\Pi_L = \frac{1}{N} \left[N + N_X (N_X - 1) + N_O (N_O - 1) - 2N_X N_O \right]^{1/2} = \frac{|N_X - N_O|}{N}$$

$$\chi_p = \frac{1}{2} \arctan \left[-\frac{(N_X - N_O) \sin(2\alpha)}{(N_X - N_O) \cos(2\alpha)} \right] = -\alpha$$

- Only in the case $\alpha_i = \alpha_j \ \forall \ i, j$ the observed Π_L and χ_p coincide with the intrinsic ones.
Vacuum polarization effects
Photon polarization in strong magnetic fields

- According to QED photons can temporarily convert into virtual e^\pm pairs, modifying the $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ tensors of the vacuum.

- The evolution of the polarization modes for photon propagating in vacuo is governed by the following system of differential equations (Heyl & Shaviv, 2002; Fernández & Davis, 2011)

\[
\begin{align*}
\frac{d\bar{Q}}{dz} &= -\frac{k_0}{2} \delta (2P\bar{\mathcal{V}}) \\
\frac{d\bar{U}}{dz} &= -\frac{k_0}{2} \delta (N - M)\bar{\mathcal{V}} \\
\frac{d\bar{\mathcal{V}}}{dz} &= \frac{k_0}{2} \delta \frac{1}{2} [2P\bar{Q} + (N - M)\bar{\mathcal{V}}] \\
\end{align*}
\]

$k_0 = \frac{\omega}{c}$

$\delta \propto B^2$

z coordinate along the LOS
Photon polarization in strong magnetic fields

• According to QED photons can temporarily convert into virtual \(e^\pm \) pairs, modifying the \(\varepsilon \) and \(\mu \) tensors of the vacuum.

• The evolution of the polarization modes for photon propagating in vacuo is governed by the following system of differential equations (Heyl & Shaviv, 2002; Fernández & Davis, 2011):

\[
\frac{d\bar{Q}}{dz} = -\frac{k_0 \delta}{2} (2P\bar{\nu})
\]

\[
\frac{d\bar{\mu}}{dz} = -\frac{k_0 \delta}{2} (N - M)\bar{\nu}
\]

\[
\frac{d\bar{\nu}}{dz} = \frac{k_0 \delta}{2} [2P\bar{\nu} + (N - M)\bar{\nu}]
\]

\[
\ell_A = \frac{2}{k_0 \delta} \sim B^{-2}E^{-1}
\]

\[
\ell_B = \frac{B}{|\hat{k} \cdot \nabla B|} \sim r
\]
According to QED, photons can temporarily convert into virtual \(e^\pm \) pairs, modifying the \(\kappa \) and \(\mu \) tensors of the vacuum. The evolution of the polarization modes for photon propagating in vacuo is governed by the following system of differential equations:

\[
\frac{d Q}{dz} = -k_0 \delta^2 \frac{2P}{V} \quad \frac{d U}{dz} = -k_0 \delta^2 N - M \quad \frac{d V}{dz} = k_0 \delta^2 \frac{2P}{Q} + N - M
\]
According to QED, photons can temporarily convert into virtual ϵ^\pm pairs, modifying the κ and μ tensors of the vacuum. The evolution of the polarization modes for photons propagating in vacuo is governed by the following system of differential equations:

\[
\begin{align*}
\frac{dQ}{dz} &= -k_0 \delta^2 P V \\
\frac{dU}{dz} &= -k_0 \delta^2 (N - M) V \\
\frac{dV}{dz} &= k_0 \delta^2 (2P Q + N - M) V \\
\ell A &= 2k_0 \delta ~B - 2E^{-1} \ell B \\
\ell B &= B \cdot \nabla B ~r
\end{align*}
\]
According to QED, photons can temporarily convert into virtual e^\pm pairs, modifying the \mathcal{S} and \mathcal{P} tensors of the vacuum.

The evolution of the polarization modes for photon propagating in vacuo is governed by the following system of differential equations:

\[
\begin{align*}
\frac{d\mathcal{Q}}{dz} &= -k_0 \delta^2 \mathcal{P} \\
\frac{d\mathcal{U}}{dz} &= -k_0 \delta^2 N - M \mathcal{V} \\
\frac{d\mathcal{V}}{dz} &= k_0 \delta^2 2\mathcal{P} + N - M \mathcal{V} \\
\end{align*}
\]

\[
\ell A = 2k_0 \delta^2 \mathcal{B} - 2E^{-1}
\]

\[
\mathcal{B} = B
\]

\[
\mathcal{E} = E
\]

\[
\mathcal{M} = M
\]

\[
\mathcal{N} = N
\]

\[
\mathcal{P} = \mathcal{P}
\]

\[
\mathcal{Q} = \mathcal{Q}
\]

\[
\mathcal{S} = \mathcal{S}
\]

\[
\mathcal{U} = \mathcal{U}
\]

\[
\mathcal{V} = \mathcal{V}
\]

\[
\Omega = \Omega
\]

\[
\delta = \delta
\]

\[
\kappa = \kappa
\]

\[
\rho = \rho
\]

\[
\sigma = \sigma
\]
Simplified approach

- The integration of the full ode system (Heyl, Shaviv & Lloyd, 2003; Fernández & Davis, 2011; Taverna et al. 2014) is quite time consuming and it is not particularly suited to study the dependences of Π_L and χ_p on the various parameters.

- We resort to a simpler, approximated treatment in which only the adiabatic region and the external one are included, divided by a sharp edge located at the adiabatic radius r_a

$$\ell_A = \ell_B \Rightarrow r_a \approx 4.8 \left(\frac{B_p}{10^{11} \, \text{G}} \right)^{2/5} \left(\frac{E}{1 \, \text{keV}} \right)^{1/5} R_{NS}$$

- The rotation of Stokes parameters can be carried out at r_a.

Polarization of neutron stars surface emission – September 2015
Roberto Taverna et al., CNOC IX – 8
Results
Numerical implementation

- LOS reference frame
 - angle χ between ℓ and Ω
 - angle ξ between b_{dip} and Ω
 - angle ψ between u and X

$$\alpha = \alpha(\chi, \xi, \psi, \Theta_s, \Phi_s)$$
Basic assumptions

- The NS emits thermal radiation following an isotropic BB distribution

\[n = \frac{I}{E} = \frac{2}{h^2 c^2} \frac{E^2}{e^{E/kT} - 1} \]

- Seed photons are 100% polarized in the X-mode

- Dipolar and globally twisted magnetic fields

- General relativistic corrections are included
 - Magnetic dipole field corrections
 - Relativistic ray-bending
Simulations

Geometry
Vacuum polarization
Results
Conclusions
Simulations

Geometry
Vacuum polarization
Results
Conclusions

Polarization of neutron stars surface emission – September 2015
Roberto Taverna et al., CNOC IX – 11
Polarization swing

\[
\begin{align*}
\chi &= 90^\circ \\
\xi &= 0, 30^\circ, 45^\circ, 60^\circ, 75^\circ, 90^\circ
\end{align*}
\]

- The polarization angle sweeps the entire range [0,180°] for values of \(\chi, \xi\) such that the polar regions are always in view during the star rotation.

- Only an independent estimate of \(\chi\) and \(\xi\) allows to understand if photons are polarized in the X- or in the O-mode.

\[
\psi = 90^\circ
\]
Dependence on the magnetic field strength

Geometry
Vacuum polarization
Results
Conclusions
Dependence on the magnetic field topology

- The polarization angle distribution is much more sensitive to the geometry of the magnetic field.

\[\chi_\gamma [\text{deg}] \]

\[\gamma [\text{rad}] \]

- Dipolar field
- Twisted field
Conclusions
Conclusions

• Systematical study of the effects of Stokes parameters rotation and vacuum polarization on the observed polarization signals, on varying the values of typical parameters \((\chi, \xi, E, B, \Delta\phi_{N-S})\)

• Our fast code allows to considerably save computational time, without loss of accuracy in re-obtaining the qualitative results, where available, of previous works (Heyl, Shaviv & Lloyd, 2003; Lai & Ho, 2003; van Adelsberg & Perna, 2003)

• The study of these effects turns out to be particularly crucial in relation to recent proposals of polarimetry missions (XIPE see E. Costa talk, IXPE)
Polarization of neutron stars surface emission: a systematic analysis

R. Taverna, R. Turolla, D. Gonzalez Caniulef

arXiv:1509.05023