LENSE-THIRRING PRECESSION DURING TIDAL DISRUPTION EVENTS

PhD student: Alessia Franchini Supervisor: Prof. Giuseppe Lodato Affiliation: Università degli Studi di Milano

Contents

- Tidal disruption events (TDEs) theory
- TDE light curve
- Accretion disc formed by stellar debris
- Lense-Thirring effect
- Disc rigid precession
- Alignment
- Conclusions and outlook

Tidal Disruption Events (TDEs)

Star wanders too close to a SMBH \longrightarrow torn apart by its tidal field (Rees 1988) $r_{\rm t} \approx 0.47 \, {\rm au} \, (M_6/m_*)^{1/3} x_*$

Impact parameter $\beta = r_t/r_p \gtrsim 1 \longrightarrow disruption$

Tidal Disruption Events (TDEs)

Could it be the disc rigid precession causing the jet precession? (Stone & Loeb 2012, Lei et al. 2013, Shen & Mazner 2014)

Accretion disc

Stellar debris orbits circularize at $r_c \simeq 2r_t$ and form an accretion disc (Bonnerot et al. 2015)

Accretion disc

Super-Eddington ($\dot{m} = \dot{M} / \dot{M}_{Edd} \gtrsim 1$) accretion in the early phase, the disc is hot and then it is expected to be thick.

$$\frac{H}{R} = \frac{3}{2} (2\pi)^{1/2} \eta^{-1} \dot{m} r^{-1} f(r) K(r)^{-1}$$

 $\dot{m} = r/r_{\rm in}$

$$\dot{m}_{\rm fb} = \dot{m}_{\rm p} (t/t_{\rm min})^{-5/3}$$

Warp

Stellar orbit inclined with respect to the black hole equatorial plane \longrightarrow coupling between the disc and the black hole angular momenta.

Lense-Thirring effect

 $\mathbf{\Omega}_{\mathrm{LT}} \simeq rac{2G\mathbf{J}_h}{c^2 R^3}$

Warp propagation in the bending wave regime since the disc is thick

 $H/R\gtrsim \alpha$

Propagation with half the sound speed

$$t_{\rm w} = \frac{2}{\Omega} \left(\frac{H}{R}\right)^{-1}$$

Lodato & Price (2007)

Rigid precession

t/days

-0.5

-1.0

Precession period Precession frequency depends on SMBH mass and spin. observable $\frac{\int_{R_{\rm in}}^{R_{\rm out}} \Omega_{\rm LT}(R) L(R) 2\pi R \, dR}{\int_{R_{\rm in}}^{R_{\rm out}} L(R) 2\pi R \, dR}$ $\Omega_p =$ 10⁴ 10³ $10^5 { \, M}_{\odot}$ 10^{2} T/dayslight curve $10^7 { ~M}_{\odot}$ 10⁰ mass period 10⁻¹ -0.5-1.00.0 0.5 1.0 \mathbf{a} Franchini et al. (2015) (submitted) inner radius

Alignment

After some time the precession stops, meaning that the disc angular momentum is aligned with respect to the SMBH spin (no longer coupling).

Conclusions and outlook

- Calculate the precession period so that it can be linked with the SMBH spin value
- Study the alignment process

- Apply this model in the case of QPOs in LMXBs.
- 3D SPH (Smoothed Particle Hydrodynamics) simulation with the aim to study the wave propagation inside the disc more deeply

THANK YOU!