High Mass X-ray Binaries hosting a neutron star: a review

Lara Sidoli

INAF-IASF Milano, Italy

High Mass X-ray Binary

The majority of the HMXB population hosts a neutron star instead of a BH

O or B-type Star

 $M_{\rm opt} > 10 M_{\odot}$

Accreting magnetized NS B ~ 10¹² G

X-ray pulsar

Two types of HMXBs depending on the massive companion

- O or B-type supergiant
 - They loose mass through a **strong** (spherically symmetric) **wind**
 - → stellar wind capture by the NS
 - → SgHMXBs (persistent or transient →

Supergiant Fast X-ray Transients, **SFXTs**)

- **Be star** main sequence B stars with Balmer lines in emission
 - Rapidly rotating, they loose mass mainly from the **equatorial** region, through a circumstellar **decretion keplerian disc** (coplanar or misaligned with the orbit). Also a polar wind is present.

The mechanism for the Be disc formation is unclear (rotation is insufficient)

- → accretion from the Be disc
- → Be/XRBs (mostly X-ray transients)

Corbet diagram before INTEGRAL (before October 2002)

sgHMXB

- O, B supergiants
- Porb: 1-15d
- Quasi circular orbits
- Persistent (Lx $\sim 10^{-36}$ erg/s)

Be-HMXB

- Be stars with circumstellar discs
- Porb: > 10 days to months
- Elliptical orbits
- Transients (Lx \sim 10 36 –10 38 erg/s)

Wind velocity (beta-law):

$$v_w(r) = v_\infty \left(1 - \frac{R_*}{r}\right)^\beta$$

0.8 - 1.2

Wind velocity (beta-law):

$$v_w(r) = v_\infty \left(1 - \frac{R_*}{r}\right)^p$$

0.8 - 1.2

Wind velocity (beta-law):

Terminal velocity ~ 1000 – 2000 km/s

Wind velocity (beta-law):

Mass loss rate from the OB star
$$\,\dot{M}_w \sim 10^{-6}\,\,{
m M}_\odot/yr$$

$$v_w(r) = v_\infty \left(1 - \frac{R_*}{r}\right)^{\beta}$$

Bondi radius Racc:

$$R_{acc} = \frac{2GM_{NS}}{v_{rel}^2(a)}$$

ORBIT OF

Wind velocity (beta-law):

Mass loss rate from the OB star $\,\dot{M}_w \sim 10^{-6}\,\,{
m M}_\odot/yr$

$$v_w(r) = v_\infty \left(1 - \frac{R_*}{r}\right)^\beta$$

Bondi radius Racc:

$$R_{acc} = \frac{2GM_{NS}}{v_{rel}^2(a)}$$

(a = orbital separation)

Accretion luminosity:

$$L_X \propto rac{
ho_w(a)}{v_{rel}^3(a)} \propto rac{\dot{M}_w}{v_w^4(a)}$$
 Lx ~ 10 35 – 10 36 erg/s

Effect of the binary **eccentricity** on the calculated X-ray light curves

Calculated assuming

spherically symmetric supergiant wind (with beta = 0.5), and two orbital periods, 20 and 70 days

Raguzova & Lipunov 1998

If matter outside the magnetosphere can cool down efficiently, $R_a = 2GM_{\rm NS}/v_w^2 = 3.7 \times 10^{10} v_{\rm g}^{-2} {\rm cm}$ all matter captured within Racc will accrete

Transitions between **different regimes**

depending on changes of the relative positions of the three radii

(given a NS with its B-field & Pspin,

transitions depend on wind density & velocity at the NS orbit)

Direct accretion

Racc < Rco < RM

Rco < RM < Racc

RM < Rco < Racc

Racc < RM < Rco

RM < Racc < Rco

Clumpy winds complicate the picture

Smooth stellar wind

Structured stellar wind

Credits: ESA C. Carreau/Nazé et al.

In principle, HMXBs can probe wind clumpiness (density and velocity wind structure)

- X-ray variability traces the mass inflow rate
- absorbing column density variations due to massive clumps passing in front of the NS

Clumpy winds complicate the picture

In principle (in absence of any mediating mechanism), HMXBs can probe wind clumpiness (density and velocity wind structure at the NS separation) by means of:

- X-ray **flux variability** tracing the mass inflow rate
- Absorbing column density variations:
 they can be due to massive clumps
 passing in front of the NS

Credits: ESA Bozzo et al. 2011

Structures in the stellar wind produced by the interaction with

the accretor

Formation of a **gas stream** as the binary separation is decreased in HMXBs

Stellar wind clumps

are likely disrupted by the accretion wake,
while other bubbles appear to form behind the shock

Blondin, Stevens, Kallman 1991

Sg HMXB simulations

Wind density distribution in a Sg HMXB hosting a neutron star with different masses

 $M_{NS} = 1.5$ solar masses

M_{NS} = 2 solar masses

Figure 1. Density distribution (in gr cm⁻³; color bar) on the orbital plane after ~ 3 orbits. The wind terminal velocity is $v_{\infty} \approx 500$ km s⁻¹ and the mass-loss rate is $\dot{M}_w \approx 10^{-6} \, M_{\odot}$ y r⁻¹. The mass of the neutron star scales from 1.5 (left) to 2.0 M_{\odot} (right). The color version of this figure is available on-line.

Sg HMXB simulations

Corbet diagram before INTEGRAL (October 2002)

sgHMXB

- O, B supergiants
- Porb: 1-15d
- Quasi circular orbits
- Persistent (Lx $\sim 10^{-36}$ erg/s)

Be-HMXB

- Be stars with circumstellar discs
- Porb: > 10 days to months
- Elliptical orbits
- Transients (Lx \sim 10 36 –10 38 erg/s)

Be/X-ray transients

"B-emission stars and X-ray sources" Maraschi, Treves & van den Heuvel 1976

Most of the accretion takes place during periastron passages

Be XRBs: two outburst types

Periodic on Porb

Associated with catastrophic perturbation of the Be disc

Be star decretion disc

The viscous decretion disc can undergo formation and dissipation episodes (Negueruela et al. 2001)

Be/X-ray binaries

The Be disc is truncated by tidal interaction with the NS Type II giant outbursts could be due to capture of larger (than in type I) amount of matter from a tilted and warped Be disc Taken from a talk given by A. Okazaki

Supergiant Fast X-ray Transients

Figure 9. Lightcurve of the observation of XTE J1739-302, in the energy range 18-60 keV (IBIS/ISGRI). Arrows indicates the peaks of luminosity.

Negueruela et al. 2006

SgHMXB

After INTEGRAL Supergiant Fast X-ray Transients

Be-HMXB

- O, B supergiants
- Porb: 1-15d
- Quasi circular orbits
- Persistent

- SFXTs
- O, B supergiants
- Transients

- Be stars
- Porb: days-months
- Elliptical orbits
- Transients

SgHMXB

After INTEGRAL Supergiant Fast X-ray Transients

Be-HMXB

- O, B supergiants
- Porb: 1-15d
- Quasi circular orbits
- Persistent

- SFXTs
- O, B supergiants
- Transients

- Be stars
- Porb: days-months
- Elliptical orbits
- Transients

The SFXT IGR J17544-2619 Exceptional outburst from a SFXT near the periastron passage...BUT this occurs rarely!

The SFXT IGR J17544-2619

Sidoli et al. 2008 Romano et al. 2012

Long-term SFXTs X-ray emission:

intermediate luminosity state of 10³³-10 ³⁴ erg/s (quiescence is at 10 ³² erg/s in the 1-10 keV band)

SFXT

- O, B supergiants + NS
- Transients

Observationally

- Mostly around 10^{33} - 10^{34} erg/s
- Sporadic, short and bright flares $(10^{36} 10^{37} \text{ ergs/s})$
- Flares: minutes hours
- Outburst: a few days
- Dynamic range up to $10^{5} 10^{6}$

This is only a sketch, no real data!

Wind accretion

- Bondi accretion is an approximation to calculate the time-averaged Lx of classical HMXBs
- If applied to the new class of transient SgHMXBs, the Supergiant Fast X-ray Transients, it results into average Lx ~ 100 times higher than observed →

SFXTs are subluminous Log (Lx)

 The mechanism for the X-ray flares is unclear

The mistery of SFXTs is twofold

This is only a sketch, no real data!

SFXT

- O, B supergiants + NS
- Transients

Observationally

- Mostly around 10^{33} - 10^{34} erg/sec
- Sporadic, short and bright flares (10³⁶ - 10³⁷ ergs/sec)
- Flares: minutes hours
- Outburst: a few days
- Dynamic range up to 10⁵

Physical mechanism debated

- Peculiar wind and/or orbit (in'tZand 05, Walter+07, Sidoli+07, Negueruela+08, ...)
- Particular properties of NS
 (gating mechanism, Grebenev+07, Bozzo+08)
- Subsonic settling accretion regime (Shakura+12, +13, +14)

This is only a sketch, no real data!

SFXTs intermittent and sporadic X-ray flares

Are they produced by an intermittent input?
 Dense clumps in the wind → X-ray flares?

Clumpy SG winds + different orbital configurations are not enough to explain SFXTs flares & their low time-averaged Lx

Supergiant winds are clumpy

SFXTs intermittent and sporadic X-ray flares

- Are they produced by an intermittent input?
 Dense clumps in the wind → X-ray flares?
- Are the flares produced by a gated mechanism?

SFXTs: centrifugal or magnetic barrier?

To explain transitions between quiescence to bright flares in SFXTs in presence of variations in the supergiant wind parameters:

- either a magnetic barrier (magnetar with a Pspin of ~ 1000 s)
- or a centrifugal barrier (neutron star with a B ~ 10¹² G and a Pspin ~ 10 s)

Racc < Rco < RM

Rco < RM < Racc

Direct accretion RM < Rco < Racc

Racc < RM < Rco

RM < Racc < Rco

Racc = accretion radius (Bondi) RM = magnetospheric radius

Rco = corotation radius

Bozzo, Stella & Falanga 2008

NuSTAR unveils the magnetic field strength in a SFXT

The magnetar nature of IGRJ17544 is ruled out

Quasi spherical accretion in slow pulsars

$$L_x > 4 \ 10^{36} \ erg/s$$

L_x < 4 10^{36} erg/s (usual

SFXT state) Accretion Bondi-Hoyle-Littleton

Subsonic settling accretion without shock near magnetosphere

Figure 1. Supersonic (Bondi-Hoyle-Littleton) accretion onto magnetized NS

Figure 2. Subsonic settling accretion onto magnetized NS

$$L_x > 4 \ 10^{36} \ erg/s$$

$L_{x} < 4 \ 10^{36} \ erg/s$

Accretion Bondi-Hoyle-Littleton

Shell

- Accretion rate controlled by plasma <u>cooling</u> (Rayleigh-Taylor instability, matter through magnetosphere: radiative cooling or Compton cooling)
- Mediates angular momentum transfer from/to magnetosphere
- Accretion can be significantly smaller than Bondi direct accretion
- Flares no more "tied" to orbit
- HMXB unified scenario

REGIMES OF QUASI SPHERICAL ACCRETION

Usual SFXTs state

 $10^{33} - 10^{34} \text{ erg/s}$

SFXTs bright flare

Brigthest SFXTs flares

Magnetic reconnection is a proposed mechanism to allow the collapse of the Shell of captured matter above the magnetosphere onto the NS in SFXTs ← SFXTs supergiant companions should display higher B stellar field

than in other UMYRs

than in other HMXBs (Shakura et al. 2012, 2014)

COSPAR 2016 event E 1,10 on HMXBs

TÜBİTAK

WE LOOK FORWARD TO HOSTING YOU IN

İstanbul Congress Valley

Assembly Web Site: http://cospar2016.tubitak.gov.tr/

A broadband perspective on massive X-ray binaries: towards a unified picture

MSO: Lara Sidoli DO: Vito Sguera

SOC: A. Bazzano

J. Blondin

R. Corbet

E. van den Heuvel

L. Kaper

P. Kretschmar

I. Negueruela

B. Paul

Jorick Vink

12 February 2016: abstract submission deadline