

Smithsonian Institution

fA

С

Paolo Esposito

The CATS @ BAR WR/BH X-ray binaries+ G. L. Israel, L. Sidoli, L. Zampieri,M. Mapelli, D. Milisavljevic, G. FabbianoCNOC IXSep 23, 2015

Thousands of X-ray unidentified sources

Faint X-ray sources can remain unidentified for years

~50,000 objects from past missions >500,000 with XMM, Chandra, Swift

Different populations of X-ray sources

Interesting srcs might lurk among them

Periodic signals are key to understand the nature of a source!

Phase

X-ray pulsators

In general, modulation is discovered through timing analysis of the source targeted by an observation

Enormous discovery space in serendipitous sources

Highlights from GLI's previous searches

- EXOSAT: 4U 0142+614, prototype of the AXP class (I+94)
- ROSAT PSPC: HD 49798, a very massive WD in a post common envelope phase (I+96, Mereghetti+09)
- ROSAT HRI: the 2-WD system HM Cnc (I+99,02; E+14), the binary with the shortest orbital period known: 5.4 min!

Ramifications in all directions and across many fields

Highlights from GLI's previous searches

- EXOSAT: 4U 0142+614, prototype of the AXP class (I+94)
- ROSAT PSPC: HD 49798, <u>a very massive WD in a post</u> common envelope phase (I+96, Mereghetti+09)
- ROSAT HRI: the 2-WD system HM Cnc (I+99,02; E+14), the binary with the shortest orbital period known: 5.4 min!

A promising candidate precursor of SN Ia

Highlights from GLI's previous searches

• EXOSAT: 4U 0142+614, prototype of the AXP class (I+94)

- ROSAT PSPC: HD 49798, a very massive WD in a post common envelope phase (I+96, Mereghetti+09)
- ROSAT HRI: the 2-WD system HM Cnc (I+99,02; E+14), the binary with the shortest orbital period known: 5.4 min!

HM Cnc: the brightest persistent Galactic source of GWs!

A new emission mechanism (UIM) possibly identified

CXOU J123030.3+413853 in NGC 4490

- Multiple CXO observations
- Modulation at P = (6.4 ± 0.1) h (confirmed also by XMM)
- Pulsed fraction: ~90 per cent

(First observed by Roberts et al. 2002)

CXOU J123030.3+413853 in NGC 4490

- Multiple CXO observations
- Modulation at P = (6.4 ± 0.1) h (confirmed also by XMM)
- Pulsed fraction: ~90 per cent

(First observed by Roberts et al. 2002)

A 6.4 hr BH binary in NGC 4490

NGC 4490 is a spiral galaxy interacting with the irregular NGC 4485

P = 6.4 h, 90% PF

~2.5 kpc from NGC 4490's nucleus

L from ~0.2 to 2×10^{39} erg s⁻¹

 $L > L_E$ for a 5–10 M_{\odot} object (similar lower limit from diskbb fit)

Circinus Galaxy X-1

Bauer et al. 2001: P ~ 7.2 h

 $L_X = (1-5) \times 10^{40} \text{ erg s}^{-1}$

See Weisskopk+2004

Strictly speaking, not a CATS@BAR source, we sort of bumped into it

P = 6.4 / 7.2 h, ~90% PF

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

P = 6.4 / 7.2 h, ~90% PF

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?

P = 6.4 / 7.2 h, ~90% PF

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?

P < 0.03% no counterparts, nH > Gal. nH

N Norm. intensity ן. ני -0.5 0 0.5 Phase

1.5

2

LMXBs:

- Transients;
- Very different pulse profiles!

low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

P = 6.4 / 7.2 h, ~90% PF L ~10^{38/39} and $10^{39/40}$ erg s⁻¹

Foreground polars?

P < 0.03% no counterparts, nH > Gal. nH

LMXBs:

- Transients;
- Very different pulse profiles!

low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

UNLIKELY!

0.0

0.5

1.0

Orbital phase

0.5

UNLIKELY!

P = 6.4 / 7.2 h, ~90% PF

 $L\sim\!10^{38/39}$ and $10^{39/40}~erg~s^{-1}$

Foreground polars?

P < 0.03% no counterparts, nH > Gal. nH

LMXBs:

- Transients;
- Very different pulse profiles!

low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

UNLIKELY!

P = 6.4 / 7.2 h, ~90% PF

 $L\sim\!10^{38/39}$ and $10^{39/40}~erg~s^{-1}$

Foreground polars?

P < 0.03% no counterparts, nH > Gal. nH

Norm intensity Norm i

HMXBs:

- Transients;
- Very different pulse profiles!

low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

UNLIKELY!

Possible only with a WR star

Wolf-Rayet stars

- Final phase (prior to core collapse) of massive stars
- H envelope stripped away via stellar wind or close binary evolution, revealing products of CNO (WN) or He burning (WC)
- Strong emission lines, intense (10⁻⁵ M_☉yr⁻¹) and fast (~(1−3)×10³ km s⁻¹) winds
- Compact, $R < 2R_{\odot}$ for M ~ 20M $_{\odot}$

N

ר ט

-

0.5

0

P = 6.4 / 7.2 h, ~90% PF

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?

Norm. intensity **P < 0.03%** no counterparts, nH > Gal. nH

LMXBs:

- Transients;
- Very different pulse profiles!

low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

UNLIKELY!

HMXBs: Possible only with a WR star

Phase

1.5

2

0.5

WR + BH

A NS cannot be excluded, $L_{x} \sim 10^{39}$ maybe 10⁴⁰ erg s⁻¹ for the NuSTAR one in M82 (Bachetti+14)

Counterparts

NGC 4490's J123030

CG X-1

3 rather bright and blue objects

 $M_{\rm V}$ from -2.5 to -7 for WRs

A $M_V = -6.4$ B-V = -0.4

B $M_V = -4.8$ B-V = -0.1

C $M_V = -3.0$ B-V = -1.2

HST: $M_V > -6.8$

Luminosity

A BH needs a disc to shine $M_{
m BH}\gtrsim 1.5\,v_{
m w,\,1000}^4\,\delta^2\,\,{
m M}_\odot$ Carpano+2007; Illarionov & Sunyaev 1975 $\dot{M}_{
m w}c^2G^2M_{
m PH}^2$

$$L_{\rm X} \approx \eta \frac{M_{\rm w} c^2 G^2 M_{\rm BH}^2}{a^2 v_{\rm w}^4}$$
$$\dot{M}_{\rm w} = 10^{-5} M_{\odot} \text{ yr}^{-1} \qquad \text{(e.g. Crowther 2007)}$$
$$v_{\rm w} = 1000 \text{ km s}^{-1} \qquad \text{(e.g. Crowther 2007)}$$

 $L_X > 3 \times 10^{39} \text{ erg s}^{-1}$ for M > 10 M_{\odot}

For CG X–1, L_X up to 2 × 10⁴⁰ erg s⁻¹ If L_E holds, M > 75 M_☉ for a He or C/O donor For 75 M_☉: $L_X = 2 \times 10^{40}$ erg s⁻¹

Easily more with RLO Canonical stellar-mass BH if moderately beamed / super-Edd

Cyg X–3 2 M_{\odot} NS or a 3–5 M_{\odot} BH P = 4.8 h, L ~ 10³⁸ erg s⁻¹

M101 ULX–1 >5 M_☉ BH; P = 8.2 d (Liu et al. 2013)

+ NGC 4490 and CG X–1 + candidate in NCG 253: $P \sim 15 h, L \sim 10^{38} erg s^{-1}$ (Maccarone et al. 2014)

WR/BH binaries are the progenitors of 2BHs with merger time scales shorter than a Hubble time NGC300 X–1 20 M_{\odot} BH; P = 32.3 h (Carpano et al. 2007)

IC 10 X–1 33 M_{\odot} BH; P = 34.9 h (Prestwich et al. 2007)

Theoretical predictions from population synthesis: 0.4 < 20 < 1000 events/yr for aLIGO or Virgo (Abadie+2010)

Host galaxy	Source	Period	BH mass	WR mass	SFR	Z	$t_{\rm GW}$
		(h)	$({ m M}_{\odot})$	$({ m M}_{\odot})$	$({ m M}_{\odot}~{ m yr}^{-1})$	(Z_{\odot})	(Gyr)
IC 10	X-1	34.9	33	35	0.07	0.22	1.4
$\operatorname{NGC} 300$	X-1	32.8	20	26	0.14	0.19	1.7
$\operatorname{NGC}4490$	CXO J123030 *	6.4	_	_	4.5	0.23	0.038
$\operatorname{NGC}253$	CXO J004732 *	14.5	_	_	4.0	0.24	0.33
Circinus	CG X–1 $*$	7.2	_	_	1.5	0.10	0.052
M101	ULX-1	196.8	20	19	3.1	0.17	200
Milky Way	$\mathrm{Cyg}\mathrm{X}{-3}$	4.8	3	7	0.25	0.31	0.051

Natal kick? Mass of the 2nd compact object?

- WR forms a 10 M_{\odot} BH via direct collapse
 - Orbital parameters left unchanged
- If BH mass unknown, we assume $10 M_{\odot}$

Host galaxy	Source	Period	BH mass	WR mass	SFR	Z	$t_{\rm GW}$
		(h)	$({ m M}_{\odot})$	$({ m M}_{\odot})$	$({ m M}_{\odot}~{ m yr}^{-1})$	(Z_{\odot})	(Gyr)
IC 10	X-1	34.9	33	35	0.07	0.22	1.4
$\operatorname{NGC}300$	X-1	32.8	20	26	0.14	0.19	1.7
$\operatorname{NGC}4490$	CXO J123030 *	6.4	_	_	4.5	0.23	0.038
$\operatorname{NGC}253$	CXO J004732 *	14.5	_	_	4.0	0.24	0.33
Circinus	CG X–1 $*$	7.2	_	_	1.5	0.10	0.052
M101	ULX-1	196.8	20	19	3.1	0.17	(200)
Milky Way	$\mathrm{Cyg}\mathrm{X} ext{}3$	4.8	3	7	0.25	0.31	0.051

$$R = \rho_{\rm SFR}(z) \sum_{i} (t_{\rm GW, i} + t_{\rm evol, i})^{-1} ({\rm SFR}_i)^{-1} {\rm yr}^{-1} {\rm Mpc}^{-3}$$
$$t_{\rm GW} = \frac{5}{256} \frac{c^5 a^4 (1 - e^2)^{7/2}}{G^3 m_1 m_2 (m_1 + m_2)} \cdot \rho_{\rm SFR}(z) \operatorname{cosmic} {\rm SFR} \operatorname{density}_{\text{evol}} \times 3 {\rm Myr}_{\text{evol}} \sim 3 {\rm Myr}$$
(Peters 1964) (Mapelli+2010)

Host galaxy	Source	Period	BH mass	WR mass	SFR	Z	$t_{\rm GW}$
		(h)	$({ m M}_{\odot})$	$({ m M}_{\odot})$	$({ m M}_{\odot}~{ m yr}^{-1})$	(Z_{\odot})	(Gyr)
IC 10	X-1	34.9	33	35	0.07	0.22	1.4
$\operatorname{NGC} 300$	X-1	32.8	20	26	0.14	0.19	1.7
$\operatorname{NGC}4490$	CXO J123030 *	6.4	—	—	4.5	0.23	0.038
$\operatorname{NGC}253$	CXO J004732 $*$	14.5	—	_	4.0	0.24	0.33
Circinus	CG X-1 *	7.2	—	_	1.5	0.10	0.052
M101	ULX-1	196.8	20	19	3.1	0.17	200
Milky Way	$\mathrm{Cyg}\mathrm{X} ext{}3$	4.8	3	7	0.25	0.31	0.051

$$R = \rho_{\rm SFR}(z) \sum_{i} (t_{\rm GW, i} + t_{\rm evol, i})^{-1} ({\rm SFR}_i)^{-1} {\rm yr}^{-1} {\rm Mpc}^{-3}$$
$$t_{\rm GW} = \frac{5}{256} \frac{c^5 a^4 (1 - e^2)^{7/2}}{G^3 m_1 m_2 (m_1 + m_2)} \cdot \rho_{\rm SFR}(z) \operatorname{cosmic} {\rm SFR} \operatorname{density}_{\text{evol}} \times 3 {\rm Myr}_{\text{evol}} \sim 3 {\rm Myr}$$
(Peters 1964) (Mapelli+2010)

 $\rho_{\rm SFR}(z=0.3) \sim 3.6 \times 10^{-2} \ M_{\odot} \ yr^{-1} \ Mpc^{-3}$ (Hopkins & Beacom 2006)

Host galaxy	Source	Period	BH mass	WR mass	SFR	Z	$t_{\rm GW}$
		(h)	$({ m M}_{\odot})$	$({ m M}_{\odot})$	$({ m M}_{\odot}~{ m yr}^{-1})$	(Z_{\odot})	(Gyr)
IC 10	X-1	34.9	33	35	0.07	0.22	1.4
$\operatorname{NGC} 300$	X-1	32.8	20	26	0.14	0.19	1.7
$\operatorname{NGC}4490$	CXO J123030 *	6.4	_	_	4.5	0.23	0.038
$\operatorname{NGC}253$	CXO J004732 $*$	14.5	_	_	4.0	0.24	0.33
Circinus	CG X–1 $*$	7.2	_	_	1.5	0.10	0.052
M101	ULX-1	196.8	20	19	3.1	0.17	200
Milky Way	$\mathrm{Cyg}\mathrm{X}{-3}$	4.8	3	7	0.25	0.31	0.051

$$R = \rho_{\rm SFR}(z) \sum_{i} (t_{\rm GW, i} + t_{\rm evol, i})^{-1} ({\rm SFR}_i)^{-1} {\rm yr}^{-1} {\rm Mpc}^{-3}$$

$$t_{\rm GW} = \frac{5}{256} \frac{c^5 a^4 (1 - e^2)^{7/2}}{G^3 m_1 m_2 (m_1 + m_2)} \cdot \rho_{\rm SFR}(z) \operatorname{cosmic} {\rm SFR} \operatorname{density}_{\text{evol}} \times 3 {\rm Myr}_{\text{evol}} \times 3 {\rm Myr}_{\text{(Peters 1964)}}$$

<16 yr⁻¹ for distance range 1 Gpc

 $0.4 < 20 < 1000 \text{ yr}^{-1}$ (Abadie+2010) / ~10 yr^{-1} (1.4 Gpc) (Maccarone+2014)

The Future - I

CATS @ BAR

- Every 3/4 months we run the pipeline on the new ACIS data; new pulsators are coming
 - Z²-like algorithms, better suited for low-counts sources
 - X-ray/optical follow-ups & classification
 - Search the XMM EPIC archive (6–73 ms sampling) in the EXTraS project

NGC 4490's 6.4 h BH binary

- Identification of the companion star
- Dynamical measurement of the BH mass
- New estimates of the metallicity of NGC 4490/85

The Future - II

- Dearth of WR HMXBs. Yet they should be relatively common and very bright. Are there others known systems which may have been misclassified?
- The sample is still small, but growing (from 3 to 7 in 2 yr!)
- Can a significant fraction of ULXs be powered by WRs?
- Stellar massive BHs >20 M_{\odot}
- Population synthesis and common envelope phase
- Rate of (stellar) 2-BH mergers to be seen (Advanced Ligo)

