Follow-up observations of the first Be/BH binary

Pere Munar-Adrover (INAF-IAPS, pere.munar@iaps.inaf.it)

CNOC IX Session: Buchi neri stellari

P. Munar-Adrover

INAF

OUTLINE

- Introduction
- MWC 656
- X-ray observations
- Follow-up
 - AGILE data analysis
 - Fermi data analysis
 - Comparison AGILE vs Fermi
- Conclusions

INTRODUCTION

Be stars

- Be stars are B stars with spectral emission lines of hydrogen $(H\alpha, H\beta, etc.)$ and a high projected rotational velocity (close to critical when de-projected).
- It is well established that Be stars have a circumstellar envelope in the form of a quasi-Keplerian deccretion disk surrounding the star

INTRODUCTION

Accretion-ejection coupling in XRBs

 Low-mass X-ray binaries: changes in their X-ray spectrum and luminosity associated to the accretion process and the presence/absence of a radio jet.

• Known as the accretion/ ejection coupling.

Spectral Hardness

Image credit: Sera Markoff (soft=more thermal, hard=more nonthermal)

MWC 656

• Discovered thanks to the AGILE detection of a gamma-ray flare (Lucarelli et al. 2010)

- Fermi could not confirm the detection (UL of 10⁻⁷ ph cm⁻² s⁻¹ at 95% c.l.)
- Confirmed as a binary system by Casares et al. (2012)
- Be star orbited by a BH (Casares et al. 2014) with a mass between 3.8 and 6.9 M_{\odot}
- MWC 656 is the first known binary system of this class

Parameter	Value	
P _{orb} (days)	60.37 (fixed)	
T ₀ (HJD – 2,450,000)	3,243.70 ± 4.30	
е	0.10 ± 0.04	
ω (degrees)	163.0 ± 25.6	
$\gamma (\text{km s}^{-1})$	-14.1 ± 2.1	
K_1 (km s ⁻¹)	32.0 ± 5.3	
K_2 (km s ⁻¹)	78.1 ± 3.2	
$a_1 \sin i (R_{\odot})$	38.0 ± 6.3	
$a_2 \sin i (R_{\odot})$	92.8 ± 3.8	
$M_1 \sin^3 i (M_{\odot})$	5.83 ± 0.70	
$M_2 \sin^3 i (M_{\odot})$	2.39 ± 0.48	
M_2/M_1	0.41 ± 0.07	
$\sigma_{\rm f} (\rm km s^{-1})$	16.7	
Cacaros ot	(2014)	Image credit: Gabriel Pérez - SMM (IAC)

Table 1 | Orbital elements for MWC 656

Casales et al. (2011)

X-RAY DATA

- Observed with XMM-Newton (15 ks)
- We detect a faint source at 4σ c.l. coincident with the position of MWC 656
- X-ray source position compatible with the *Hipparcos* position of MWC 656 at 2.4**o**
- Detected only in the 0.3-5.5 keV range
- Spectrum with low number of counts (0.3-5.5 keV energy range)

Munar-Adrover et al. (2014)

X-RAY DATA

- Observed with XMM-Newton (15 ks)
- We detect a faint source at 4σ c.l. coincident with the position of MWC 656
- X-ray source position compatible with the *Hipparcos* position of MWC 656 at 2.4σ
- Detected only in the 0.3-5.5 keV range
- Spectrum with low number of counts (0.3-5.5 keV energy range)

Munar-Adrover et al. (2014)

X-RAY LUMINOSITY vs RADIO LUMINOSITY CORRELATION

X-RAY LUMINOSITY vs RADIO LUMINOSITY CORRELATION

Munar-Adrover et al. (2014)

P. Munar-Adrover

GAMMA-RAY OBSERVATIONS

- Analysis strategy (AGILE and Fermi/LAT):
 - Blind search in 2-days bins
 - Search for periodicity
 - Search for steady emission
 - Stack detected events to get a spectrum

AGILE DATA ANALYSIS

• Blind search: 10 flaring events registered by AGILE between 2007 and 2013

l	b	t_{start}	t_{end}	Flux	\sqrt{TS}
[°]	[°]	[UT]	[UT]	$[\times 10^{-6} \text{ cm}^{-2} \text{ s}^{-1}]$	VIS
100.28	-13.22	2007-11-23 UT00:02:10	2007-11-24 UT12:02:12	1.5 ± 0.5	4.5
100.22	-12.61	2008-06-28 UT12:03:15	2008-06-30 UT06:03:15	0.6 ± 0.3	3.2
101.74	-11.25	2009-01-04 UT12:02:12	2009-01-07 UT00:02:12	0.5 ± 0.2	3.1
100.94	-12.65	2010-06-13 UT12:01:06	2010-06-14 UT18:01:06	1.4 ± 1.1	3.2
99.27	-11.50	2010-06-30 UT00:01:06	2010-07-02 UT00:01:06	1.3 ± 0.6	3.1
99.96	-12.24	2010-07-25 UT00:02:12	2010-07-27 UT00:02:12	1.4 ± 0.6	3.8
99.94	-12.76	2011-10-08 UT00:02:12	2011-10-10 UT00:02:12	2.5 ± 1.1	3.4
101.70	-12.51	2011-04-09 UT00:02:12	2011-04-11 UT00:02:12	2.2 ± 1.1	3.1
100.38	-12.70	2013-07-10 UT00:00:00	2013-07-12 UT00:00:00	3.2 ± 1.6	3.5
100.34	-11.81	2013-03-07 UT00:00:00	2013-03-08 UT09:00:00	2.6 ± 1.4	3.1

AGILE GAMMA-RAY TRANSIENT DETECTIONS AROUND THE POSITION OF MWC 656.

from Le Hoang master thesis (2014)

osservatorio Astronomico di Roma, 22-25 Septembre 2015

AGILE DATA ANALYSIS

10

AGILE DATA ANALYSIS

FERMI/LAT DATA ANALYSIS

- Blind search not ready yet...
- Steady emission: UL for 6 years integration: 8.0×10⁻¹⁰ cm⁻² s⁻¹
- Stacking of AGILE detected flares: UL integrating all flares: 3.0×10⁻⁸ cm⁻² s⁻¹
- Search for periodic emission

COMPARISON: AGILE vs FERMI

COMPARISON: AGILE vs FERMI

 Fermi and AGILE effective area decrease with zenith distance (ZD), specially above 50°

- We checked the source ZD at any given moment for the entire *Fermi* and *AGILE* missions
- During AGILE 2010 flare, MWC 656 is almost always at ZD > 50° for Fermi

COMPARISON: AGILE vs FERMI

• Time spent by AGILE and Fermi/ LAT observing MWC 656 at diferent ZD

• Flares:

- AGILE: more than 50% of time at ZD < 50°
- Fermi/LAT: only 20% of time at ZD < 50°
- Rest of time:
 - AGILE: on average 30% of time spent at ZD < 50°
 - Fermi/LAT: on average 12% of time spent at ZD < 50°

CONCLUSIONS

- The first Be/BH system was discovered thanks to the AGILE detection of a transient gamma-ray flare (Lucarelli et al. 2010)
- Munar-Adrover et al. (2014) discovered the X-ray counterpart of MWC 656. It is a high-mass X-ray binary. Two spectral components: thermal and non thermal. System at the quiescent state with very low luminosity
- AGILE detected 10 flares. Spectrum derived by stacking them. No sign of periodicity or recurrence
- Fermi/LAT does not detect the flares or any other episode of activity from MWC 656 field
- Reason of discrepancy might be diferences in off-axis position of MWC 656 between AGILE and Fermi/LAT during the occurrence of the flares

Fhank you

WORK IN PROGRESS: JOINT CHANDRA-VLA OBSERVATION

- Joint Chandra/VLA observations to:
 - Obtain good X-ray position and spectrum
 - Detect the source in radio
 - Check accretion/ejection coupling in the first quiescent HMXB
- 60 ks obs with Chandra + 6 h obs with VLA (8 - 12 GHz)
- Expected radio flux density between 9 and 18 μJy

X-RAY DATA ANALYSIS

• The non thermal luminosity in the 0.3-5.5 keV range is $L_X = (1.6^{+1.0}_{-0.9}) \times 10^{31} \text{ erg s}^{-1} = (3.1 \pm 2.3) \times 10^{-8} L_{Edd}$

• The value of non thermal luminosity is well below the threshold of 10^{-5} L_{Edd} set by Plotkin et al. (2013) to indicate the quiescent state of XRBs, making our results compatible with MWC 656 being in quiescence

• This is the first case of a detection of a HMXB with a BH in quiescence

• Might be interpreted as an ADAF which leads to the low X-ray luminosity

X-RAY DATA ANALYSIS

- Thermal component
 - -Might be arising from the hot wind of the Be star
 - -The luminosity of this component is compatible with the $L_x/L_{Bol} \sim 10^{-7}$ relation from Cohen et al. (1997). Our results are $L_x/L_{Bol} \sim 3 \times 10^{-7}$

- -Photon index $\Gamma = 1.0\pm0.8$ compatible with Plotkin et al. (2013)
- -Possible origin in the vicinity of the black hole
- -The non thermal luminosity in the 0.3-5.5 keV range is $L_X = (1.6^{+1.0}) \times 10^{31} \text{ erg s}^{-1} = (3.1 \pm 2.3) \times 10^{-8} L_{Edd}$

