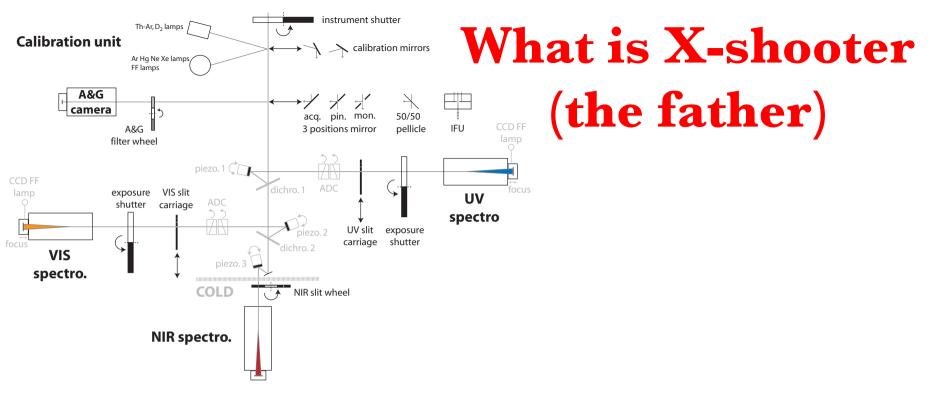


Son Of X-Shooter at ESO/NTT

Sergio Campana

Osservatorio astronomico di Brera

On behalf of a large collaboration


Monteporzio Catone - CNOC IX - 24 sttembre 2015

What is SOXS

• ESO call for new instruments at NTT (06/2014)

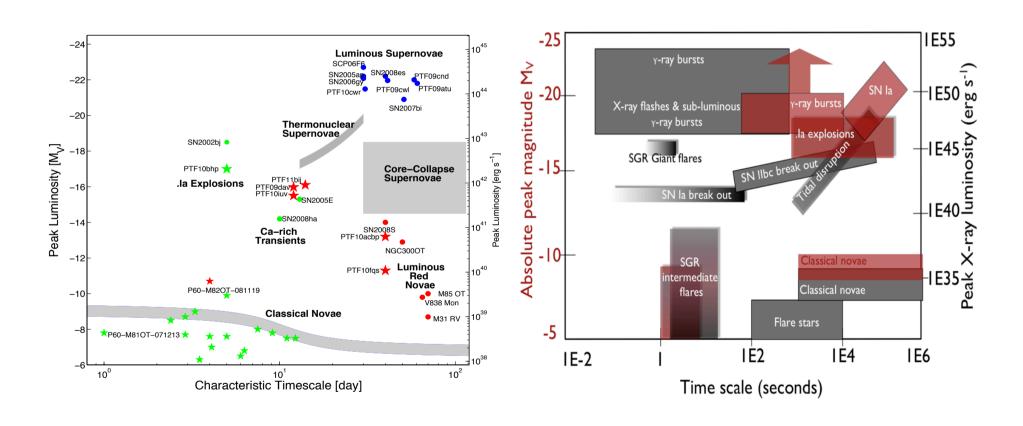
• Proposal submission (02/2015)

• SOXS selected by ESO (05/2015) out of 19

UVB			VIS				NIR		
Slit width	Resolution	Sampling	Slit width	Resolution	Sampling	Slit width	Resolution	Sampling	
(")	$(\lambda/\delta\lambda)$	(pix/FWHM)	(")	$(\lambda/\delta\lambda)$	(pix/FWHM)	(")	$(\lambda/\delta\lambda)$	(pix/FWHM)	
0.5	9100	3.5	0.4	17400	3.0	0.4	11300	2.0	
0.8	6300	5.2	0.7	11000	4.8	0.6	8100	2.8	
1.0	5100	6.3	0.9	8800	6.0	0.9	5600	4.0	
1.3	4000	8.1	1.2	6700	7.9	1.2	4300	5.3	
1.6	3300	9.9	1.5	5400	9.7	1.5	3500	6.6	
IFU	7900	4.1	IFU	12600	4.2	IFU	8100	2.8	

Band	U	В	V	R	Ι	J	Н	K'
mag	21.5	21.7	21.7	21.6	21.2	20.5	20.8	19.3

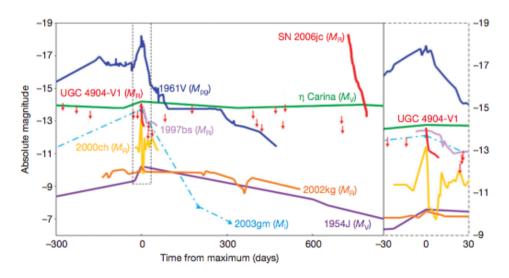
Continuum spectrum S/N=10 - 1 hr exposure


NOT Transient Explorer – A new work-horse for the Nordic Optical Telescope

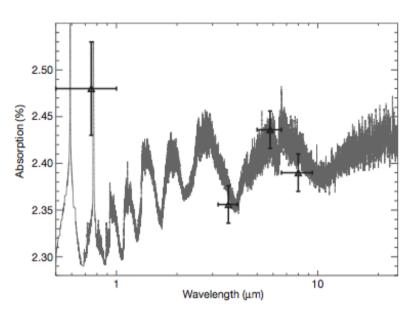
- A cross-dispersed spectrograph covering 350-1700 nm, resolution ~4000 (possibly with also a higher-res mode), single slit (with different choices for the slit width), including ADC and efficient enough to be sky-limited in 30 min integration.
- Visible imager with 5-6 arcmin FOV, 2k x 2k detector, sampling 0.15-0.18 arcsec per pixel.
- Near-IR imager using a 2k x 2k HAWAII-II detector with same FOV and sampling as in the visible.
- De-scoped version: imaging reduced to a visible slit-viewing camera with FOV of 3 arcmin (similar to StanCam).

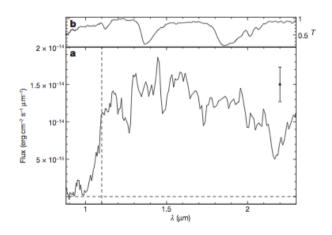
Nordic (Denmark, Sweden, etc.) + Italian collaboration

SOXS Science case: the transient sky


Just a few science cases

- Minor planets and asteroids
- Young stellar objects
- Planetary transits
- X-ray binary transients
- Novae
- Magnatars
- Supernovae (Ia, CC)
- GRB
- TeV transients
- GW & neutrino EM counterparts
- Radio sky transients & fast radio bursts


Discovery space


First SN shock break out

Major outburst 2 yr before the (probable) SN explosion

Water vapor in the atmosphere of a transiting planet

The most distant object in the Universe (at the time of discovery)

A working example

During 2005-2013 Nature published ~180 astronomical papers with more than 50 citations.

Among them **36%** are on transients objects.

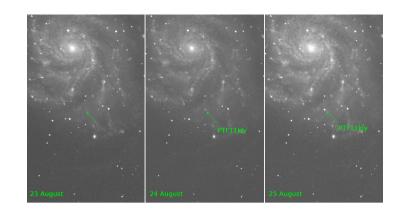
PESSTO

An already working example

- ~20% of selected candidates from SN searches enter into the observing queue
- ~ 50% of the transients are eventually observed and classified
 90% remain unclassified

DN (U Gem) (except rare big flares)

GAIA Transient Alerts

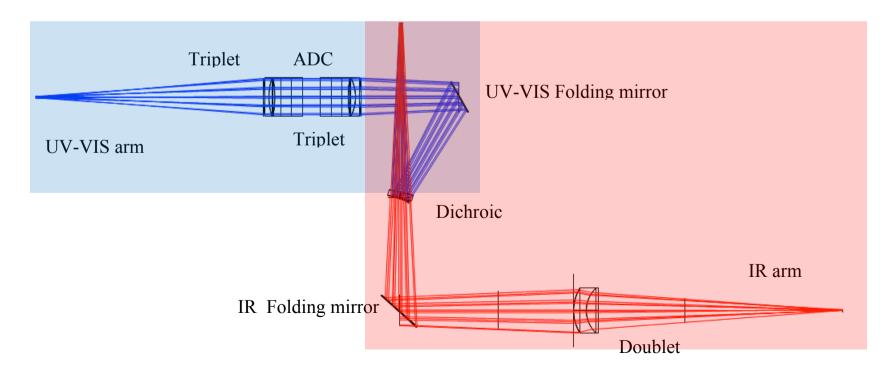

500 (?)

gal. plane

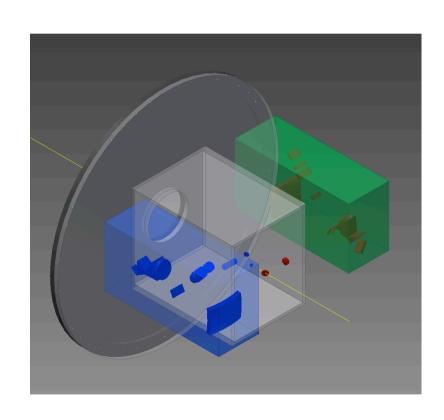
GAIA is coming

alerting object	5-yrs (Entire Mission)	main location
Supernovae <19 mag	6000	out of plane
Microlensing (bulge)	~1000	bulge/plane
Microlensing (all sky)	~700	out of plane
GRB optical counterparts	~hundreds (?)	out of plane
R CrB-type stars	~hundreds (?)	gal. plane
CN	150	gal. plane
FU Ori	14	gal. plane
Eclipsing binaries	a million (?)	gal. plane
AGNs	500,000 (?)	out of plane
Asteroids	thousands (?)	out of plane
Be stars	thousands (?)	gal. plane
Long period variables/Miras	thousands (?)	gal. plane
M-dwarf flares	2000	gal. plane

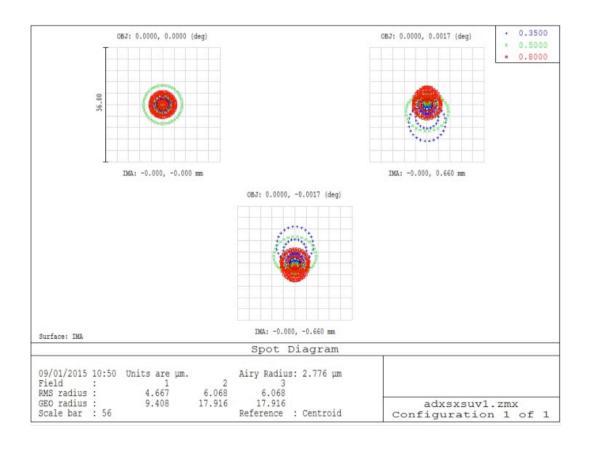
What is SOXS


Spectroscopic machine for the transient sky. Even now with PESSTO in place >70% of newly discovered transients remain without spectroscopic follow-up.

In the near future years there will be many <u>imaging</u> survey wide-field telescopes (iPTF, DES, Pan-STARRS, LSST) as well as high-energy transients (Swift, INTEGRAL, MAXI), GAIA-alters GW-alters, TeV alerts, etc. but very limited spectroscopic follow-up

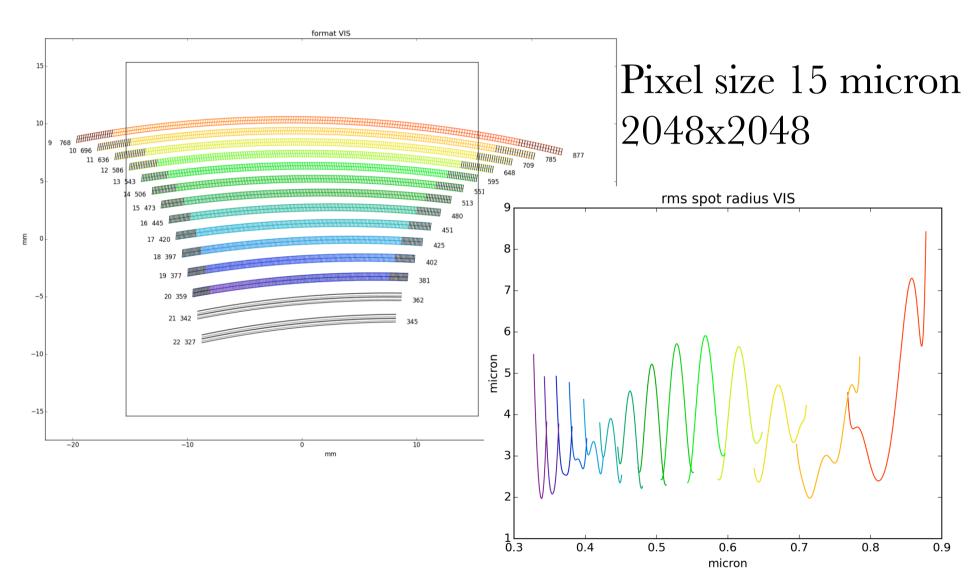

SOXS @ NTT

We propose to build and operate a spectroscopic facility, SOXS (Son of X-Shooter), with a wide spectral coverage (0.35-1.75 $\mu m)$ and good spectral resolution (R~4,500) able to characterize and follow-up in depth any kind of transient source

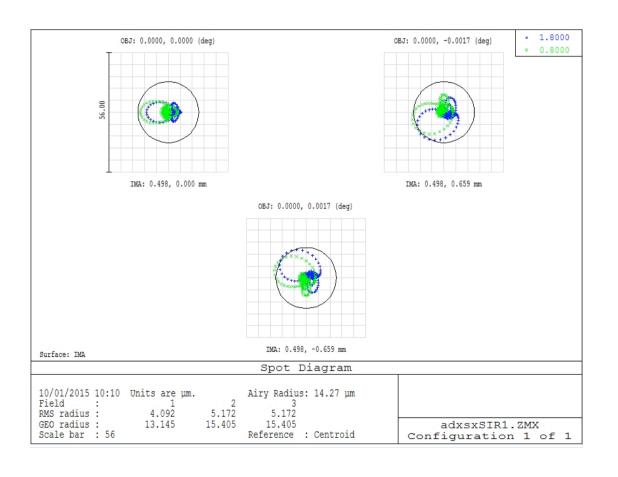

A possible optical layout of the Common Path

SOXS @ NTT

Initial performances



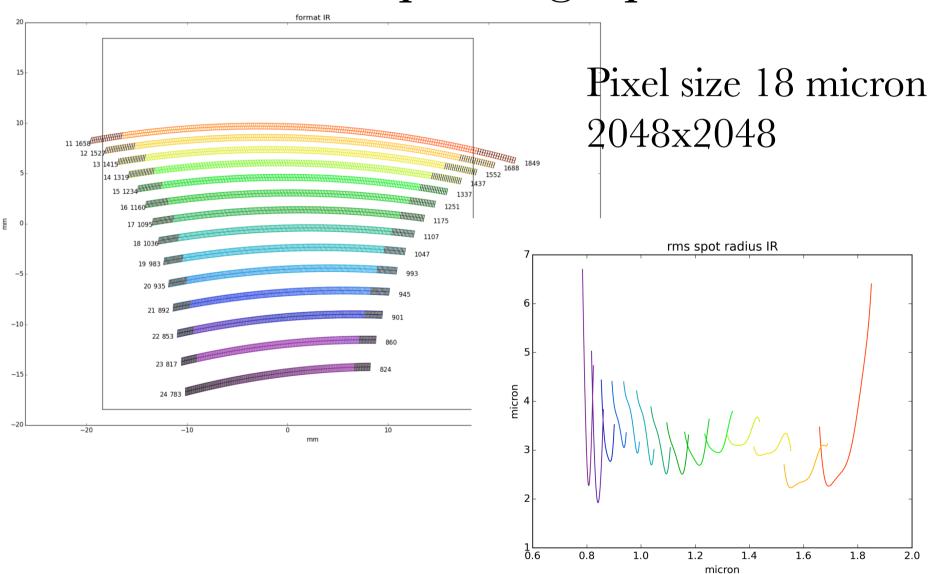
BLUE arm


0.5 arcsec box

0 and ±12arcsec positions

BLUE spectrograph

Initial performances



RED arm

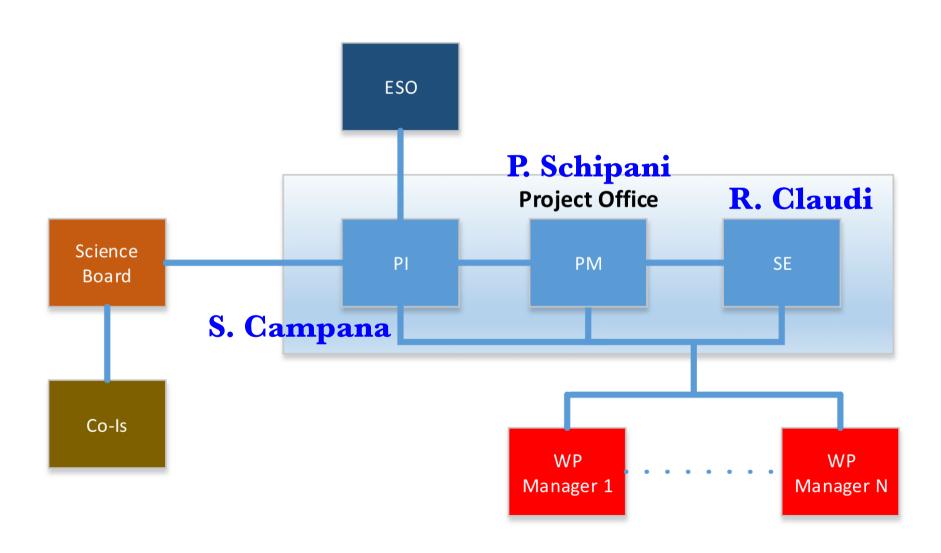
0.5 arcsec box

0 and ±12arcsec positions

RED spectrograph

SOXS performances

• Goal:


continuum spectrum $R\sim20-20.5$ S/N=10 in 1 hr

This nicely match limiting magnitude of current (e.g. iPTF) synoptic surveys

"Extended" guiding camera to use as imaging (optical) instrument >3 arcmin FOV.

Source class	Obs. Time	Key project & Aim
All	500 hr	Fast characterization of transients from other surveys
Open	500 <u>hr</u>	Open time for spectroscopic ToO observations
Asteroids & TNO	200 <u>hr</u>	Characterization of populations of minor bodies, input to models of solar system formation and mitigation of impact hazard
Comets and new comets	100 <u>hr</u>	
Planetary transits	200 <u>hr</u>	Monitor of >5 bright stars for primary and secondary eclipses
Young stellar objects	100 <u>hr</u>	
Stars	100 <u>hr</u>	
X-ray binary transients	200 <u>hr</u>	Derive the mass function of >10 XRB transients in outburst
Magnetars	50 hr	Fast follow up of >10 magnetar's flares
Novae	100 <u>hr</u>	
ILOT	$300 \mathrm{hr}$	
SN <u>La</u>	$500 \mathrm{hr}$	Statistical sample of > 150 SNe Ia in the low-z Universe to study
		the local properties and dust extinction
CC-SN	$500 \mathrm{hr}$	
Super-luminous supernovae	$500 \mathrm{hr}$	Build a statistical spectroscopic sample of SLSN
Prompt GRB	100 <u>hr</u>	Fast spectroscopy of >50 GRBs to probe the galaxy host medium
High-z ($z>5$) GRB	$50\mathrm{hr}$	Transmission spectra of >5 high-redshift GRBs
GRB- <u>SNe</u>	100 <u>hr</u>	Follow the evolution of >5 SN associated to nearby ($z<0.3$) GRBs
Active galactic nuclei	$200 \mathrm{hr}$	
and blazars		
Tidal disruption events	100 <u>hr</u>	Study the spectral evolution of >10 TDEs
Gravitational Wave triggers	$200\mathrm{hr}$	Spectroscopic follow up of candidate GW counterparts. This
		includes kilonovae from short GRBs.
Neutrino triggers	100 <u>hr</u>	Spectroscopic follow up of candidate neutrino counterparts
Unknown	300 hr	

Consortium structure

Science Board

- S. Campana (INAF-OABrera) Italy
- E. Cappellaro (INAF-OAPadova) Italy
- M. Della Valle (INAF-OANapoli) Italy
- A. De Ugarte Postigo (IAA-CSIS) Spain
- J. Fynbo (Dark-NBI) Denmark
- M. Hamuy (Millenium Inst.) Chile
- G. Pignata (Millenium Inst.) Chile
- S. Smartt (Univ. Belfast) UK
- S. Basa (LAM) France
- L. Le Guillou (LNPHE) France
- B. Schmidt (ANU) Australia
- M. Colless (ANU) Australia
- A. Gal-Yam (Weizmann) Israel
- S. Mattila (FINCA) Finland

Funds

>84% secure funds (as most of the projects)

Remaining funds have been/are going to be asked for at different national agencies

Timeline 2016-2020

Project phase	Aprrox. start	Approx end	Duration
Phase A	12/2015	04/2016	5 months
Phase B	05/2016	10/2016	5 months
Phase C	11/2016	08/2017	10 months
Phase D	09/2017	12/2019	28 months
Phase E	12/2019	>2023	

Good timing with CTA (and SKA)

Operations

ESO will reward the consortium with NTT observing time.

We will start from ~2018 with existing instruments (EFOSC2+SOFI) and when SOXS will be ready (mid-2019) we will continue with SOXS.

We will likely have $\sim 150 \text{ n/yr.}$

Observers on-site and instantaneous response to fast alerts.

Data policy

<5% of the consortium time open to the community as fast ToO (Swift-like) observations (public data)

Relevant information (redshift, peculiar sources, etc.) announced in real time through GCN, ATEL, IAUC, etc.

Consortium data public after a short (1-3 months TBD) proprietary period.

Thanks