pyLCSIM

A Python package for the
simulation of X-ray lightcurves

Riccardo Campana
INAF/IASF-Bologna

CNOC IX - Monte Porzio Catone - 25/09/2015

Once upon a time...

In 2010, before the original M3 LOFT proposal submission,
at IASF-Roma (RC, Imma Donnarumma, Yuri Evangelista)
we developed an online X-ray lightcurve simulator

eno Multi-purpose light curve generator - Version 0.6 e

e LQJ LL-:J LQ; L‘J @J L‘_l'_‘(ﬂ zoldberg.laps.inaf.it e 7 L_O_J

Multipurpose light-curve generator

Cick here 10 view the light-curve generator user guide (v0.6) ";_

~— Simulation parameters

Exposure time [s):

Light curve resolution [s):

Source rate [ct8/s):

Background rate [cts/s):

Phase shift [deg): 0

Seed for random number generator (blank value for usual seed)

PSD plotting parameders
No. points/interval

Rebdinning tactor for PSD plot: 1

~ Shot-noise parameters

Relaxation time [s): =1 (~1: no shot-noise added)
Number of shots: -1 (<1: no shot-noise added)

Height of shots [cta/s): =1 (~1: no shot-noise added)

Select model

Select...

Once upon a time...

The simulator was useful for the original LOFT/M3 proposal submission, and
sometimes thereafter. lts main features were:
|.Web form with backend written in IDL
2. Possibility to simulate coherent signals (sum of sinusoids or harmonics)
3. Simulate a lightcurve from simple PSD models:

powerlaw, powerlaw with |,2 or 3 QPOs
4. FITS output

But...
® Poorly documented codebase
@ Difficult to extend to different models and/or requirements
@ Licensing problems (IDL is not free!)

The solution!?
© Refactory the code as a pure python module!

Why Python?

Python has grown in the last years becoming one of the most powerful,
general purpose programming languages, also for science.

v Hundreds of extension packages
= Numerical computation (numpy)

= Scientific libraries (scipy)

~ |

. ‘ | (()
= Astronomy utilities (astropy) : 7) " (|
= Data analysis frameworks (pandas)

= Powerful plotting libraries (matplotlib)

= http://xkcd.com/353/

v Easy to integrate with existing routines (C/C++, Fortran, R, MATLAB interfaces)
v Support different programming styles (imperative, OOP, functional...)

v Free! (and multiplatform)

http://xkcd.com/353/
http://xkcd.com/353/

pyLCSIM

Features

v Object-oriented approach to light curve simulation

= From a library or user-defined PSD model, lightcurve generated
using the Timmer-Konig 1995 algorithm (with the possibility to use
an arbitrary number of additive models)

= From a coherent signal (sum of sinusoids or harmonics)
v Modular design, easily extendable to other models
v Easy of integration with existing analysis/simulation scripts

v FITS output for lightcurve and power spectrum

yLCSIM

The latest release (0.2.2) can be downloaded from
http://pabell.github.io/pylcsim

® 00 Documentation for pyLCSIM — pyLCSIM 0.1 documentation "

<« > Oz (0 i3] @)+ O pavelgthub.io ¢ (O]
‘ - | |

Documentation for pyLCSIM

J
)
7,
-~

Introduction
pyLCSIM is a python package to simulate X-ray lightcurves from coherent signals and power spectrum models.

Coherent signals can be specified as a sum of one or more sinusoids, each with its frequency, pulsed fraction and phase
shift; or as a series of harmonics of a fundamental frequency (each with its pulsed fraction and phase shift).

Power spectra can be simulated from a model of the power spectrum density (PSD), using as a template one or more of the
built-in library functions. The user can also define his/her custom models. Models are additive.

A PDF version of these notes is available here.

Warning: the current release (0.1.x) is HICHLY EXPERIMENTAL! Use at your own risk...

Prerequisites
pyLCSIM requires Numpy (at least v1.8) and Astropy (at least v0.3).

Matplotlib is highly recommended if you want to plot your simulations.

Installation -

The package can be downloaded nere.
Enter search terms or a module,

The installation follows the usual steps: class or function name.

$ tar xazvf pylLCSIM-©.1.1.tar.g2
$ cd pylLCSIM-0.1.1

$ python setup.py install

The last step may require administrator privileges.

http://pabell.github.io/pylcsim
http://pabell.github.io/pylcsim

pyLCSIM

The latest release (0.2.2) can be downloaded from
http://pabell.github.io/pylcsim

$ tar xzvf pyLCSIM-0.x.y.tar.gz
$ cd pyLCSIM-0.x.y
$ python setup.py install

...or installed/upgraded using the Python Package Index

$ pip install pyLCSIM --upgrade

(the latter is the preferred and simpler installation method,
since it automatically solves any required dependency)

http://pabell.github.io/pylcsim
http://pabell.github.io/pylcsim

Example |

Simulation of a lightcurve from a library PSD model

import matplotlib.pyplot as plt
import numpy as np
import pyLCSIM

rate_src = 30000.0 # Rate of source (cts/s)
rate bkg = 5000.0 # Rate of background (cts/s)
t_exp = 50.0 # Exposure time 1in seconds
dt = 0.01 # Time resolution 1n seconds

nbins = t _exp/dt

Example |

Simulation of a lightcurve from a library PSD model

Instantiate a simulation object
sim = pyLCSIM.Simulation()

Add two PSD models: a smooth broken power Law
and a Lorentzian representing a QPO.

See the documentation for details.
sim.addModel('smoothbknpo', [1., 1, 2, 1])
sim.addModel('lorentzian', [16., 1., 10, 2])

Run the simulation
sim.run(dt, nbins, rate _src, rms=frms)

Add Poisson noise to the Light curve
sim.poissonRandomize(dt, rate bkg)

Get Lightcurve and power spectrum as 1-D arrays
time, rate = sim.getLightCurve()
f, psd = sim.getPowerSpectrum()

Example |

Simulation of a lightcurve from a library PSD model

__Power spectrum density model

PSD model
=
o

107}

107}

10'4 . L N X X | N N L X N
1072 10! 10° 10! 10°
Frequency [HZ]

Example |

Simulation of a lightcurve from a library PSD model

Lightcurve

50000

45000

40000

35000

Rate [counts/s]

30000

25000+

20000 ' 1 *
0 10 20 30 40 50 102

Time [s]

Example |

Simulation of a lightcurve from a library PSD model

Light __Power spectrum density

50000] 10°
2
45000 10%¢ ?
T
U 107]
— 40000 =
u ©
n - 0
c S 10°} |
- = :]
O 35000
L P
v © 107}
I e
& 30000 U
2 107}
® .
25000 1031 |
20000 1 10 1 1 1
0 10 20 107 10 10° 10 10°
Tim Frequency [Hz]

Example 2

Simulation of a lightcurve from an user-defined PSD model

def myFunc(f, p):

mnmiIn

Example of user-defined function: a Gaussian.
User-defined PSD models should be positive-valued!
Moreover, 1in this example the output 1s clipped at le-32
to avoid too small values.

mnmin

f = p[@]*np.exp(-(f-p[1])**2/p[2]**2)
return np.clip(f, 1e-32, np.max(f))

sim = pyLCSIM.Simulation()
sim.addModel('smoothbknpo', [1., 1, 2, 1])

sim.addModel(myFunc, [16060., 10, 1.])(—

Run the simulation
sim.run(dt, nbins, rate src, rms=frms)

Example 2

Simulation of a lightcurve from an user-defined PSD model

__Power spectrum density

PSD [Leahy normalized]

1072 10! 10° 10% 10°
Frequency [HZ]

Example 3

Coherent signal as a sum of sinusoids

Instantiate a simulation object, this time as coherent
sim = pyLCSIM.Simulation(kind="'coherent")

Run the simulation, using:

four sinusoidal frequencies: 340, 550, 883, 1032 Hz;

with pulsed fractions 10%, 5%, 7% and 15% respectively;

the third frequency has a 35 degree phase shift

with respect to the others

sim.run(dt, nbins, rate src, freq=[340, 550, 883, 1032], \
amp=[0.1, 0.05, 0.07, 0.15],\
phi=[0., 0, 35., 0.])

Add Poisson noise to the Light curve
sim.poissonRandomize(dt, rate_bkg)

Get Lightcurve and power spectrum as 1-D arrays
time, rate = sim.getLightCurve()
f, psd = sim.getPowerSpectrum()

PSD [Leahy normalized]

Example 2

Coherent signal as a sum of sinusoids

Power spectrum density

10" 10° 10* 10° 10° 10*
Frequency [HZ]

Example 4

Coherent signal as a sum of harmonics

Instantiate a simulation object, this time as coherent
sim = pyLCSIM.Simulation(kind="'coherent")

Run the simulation:

Fundamental at 500 Hz, 3 harmonics (506, 1000, 1500 Hz)

with pulsed fractions 10%, 5% and 15% respectively

sim.run(dt, nbins, rate src, freq=5600, nha=3, amp=[0.1, 0.05, 0.15])

Add Poisson noise to the Light curve
sim.poissonRandomize(dt, rate bkg)

Get Lightcurve and power spectrum as 1-D arrays
time, rate = sim.getlLightCurve()
, psd = sim.getPowerSpectrum()

Future prospects

Features that will (or can) be added in future versions
|. Multiplicative PSD models

2. More refined simulation algorithms (e.g.
Emmanoulopoulos et al. 201 3)

3.Add more examples and documentation
4. Add a few analysis utilities (e.g. for the PSD)

Conclusions

pyLCSIM is at a very early stage of development!
(i.e. use at your own risk)

If you are interested to:
|. Help beta-testing

2. Suggest new features

3. Collaborate to the code
...check it out!
http://pabell.github.io/pylcsim
And contact me at:
campana@iasfbo.inaf.it

http://pabell.github.io/pylcsim
http://pabell.github.io/pylcsim
mailto:campana@iasfbo.inaf.it
mailto:campana@iasfbo.inaf.it

