

EXTENDED EDITION

GianLuca Israel (INAF - Rome Astronomical Observatory)

Sources

Collaborators: Esposito, Rodriguez, Masetti, Sidoli, Motta, Zampieri, Mason, D'Avanzo, Campana and others

qn

CATS@BAR

Chandra Acis Timing Survey @ Brera And Rome AOs: an ad hoc pipeline (C-shell/Fortran) developed and applied in an automatic fashion to the ACIS archive (imaging obs. only).

First run in June 2012. Updated every ~2months

Main properties are:

- data retrieving
- exposure map creation and source detection (WAVDETECT)
- search for signals in sources with >150 events based on FFT (I&Stella '96) pros : fast and well known cons : not suited fo faint sources / non sinusoidal signals
- assessment of signal goodness (instrumental vs real, DITHER_REGION ciao task)

HOW ?

Algorithm well suited for automatic searches of significant peaks in the presence of different noise components in PSD.

ilanluca 26–N

WHY CHANDRA ?

Only Chandra and XMM (and SWIFT) provides large enough throughput and good psf.

- Chandra ACIS pros:
- very low BG level well suited to study faint sources;
- relatively long pointings in (very) crowded regions
- large number of serendipitous sources: ~45 src/field

...but it is definitely not suited for "timing" due to:

- dithering oscillations around the on-axis direction (pile-up mitigation);
- long sampling time, 3.2s in most cases (no sensitivity below P<6.5s)

WHY CHANDRA ?

Only Chandra and XMM (and SWIFT) provides large enough throughput and good psf.

- Chandra ACIS pros:
- very low BG level well suited to study faint sources;
- relatively long pointings in (very) crowded regions
- large number of serendipitous sources: ~45 src/field

...but it is definitely not suited for "timing" due to:

- dithering oscillations around the on-axis direction (pile-up mitigation);
- long sampling time, 3.2s in most cases (no sensitivity below P<6.5s)

Detector	Peak-to-peak	Nominal Period	Nominal Period
	Span (arcsec)	in Y (s)	in Z (s)
ACIS	16	1000	707

SPURIOUS SIGNALS

By product: a complete catalog of serendipitous signals

CNOC IX Sep 2015

FEW NUMBERS AND STATISTICS

	Sep 2013	Sep 2015	Delta
Public observations Analysed LCs Detected peaks New Pulsators	9000 410000 150000 32	10500 470000 170000 42	+14% +13% +12% +25%
Fields / New Pul LCs / New Pul	 280 13000	 250 11000	

Approx. 3 new pulsators every year

SAMPLE PROPERTIES

THE BHC SAMPLE

THE CV SAMPLE Likely the largest component in the sample.... two examples

Start Time 11685 20:11:57:320 Stop Time 11685 22:56:03:600

THE NS SAMPLE (THE FASTEST SIGNAL)

CNOC IX Sep 2015

THE CLASSIFICATION PROCESS

Summary from 2 nights @ NOT during 2014

THE FUTURE

- the CATS@BAR pipeline is applied to any new ACIS archival data every 2 months. 10-20 new pulsators are expected to be detected before the end of the mission (with FFT).
- Improvements: FFT is well suited for relatively strong and/or almost sinusoidal signal. Z²-like algorithms (more suited for low-counts sources) will be applied to the archive in the future.
- X-ray/Optical follow-up: classification [XMM,NOTLBT,SALT so far]
- EXTraS: an approved fp7 3-yr project (PI Andrea DeLuca) aimed at searching (among other aims) for new X-ray pulsators in the EPIC cameras.
 Expected results: extending the CATS@BAR sample towards shorter periods (sampling time in the 40-70ms). So far we found ~25 new X-ray pulsators

CATS VS EXTRAS: PRELIMINARY

