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Pulsar Wind Nebulae are powered by the spin-down of
young neutron stars that lose their energy in the form of a

magnetized, relativistic and cold wind.
The fact that the wind is cold makes necessary to use
numerical models to investigate it.

 How to construct the numerical model of the Pulsar Wind (PW)
* How to obtain synthetic emission maps from simulations
e Simulation overview: from the beginning to the final stage of the evolution
w Some results from the simulation of the Crab nebula
* Investigating the particle acceleration mechanism(s) at the wind termination shock
of the Crab nebula
w \What wisps observations tell us
w The wisps multiwavelenghts analysis
w Results
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| How to obtaln synthetlc emission maps




_ Simdlation overview

STEP O Initialization of the system @ t=0 yr

STEP>0 System evolved up to t=t. ., =950 yr, solving
numerically the eqs of the RMHD 2d axy-
simmetric model + adiabatic EoS with the shock-
capturing numerical code ECHO [Del Zanna 2007]. §
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week with g4 CPUs. Typical Run:
N,=800, N,=400, 0 < t < 1000 yr
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Investlgatmg the pa’rtlcle accelera‘non mechanlsm .

Properties are only due to the fluid
and magnetic field structure.

see Olmi et al. 2014 | |

: » | Bietenholz t al. 2004
Wisps are seen at multiwavelengths . RADIO + OPTICAL WISPS

Not coicident locations e — Ve Beas

Different outward velocities, mildly
relativistic 0.1c < v < 0.4c

To have not coincident wisps at different
wavelengths particles must have different
acceleration mechanisms!
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[Olmi et al. 2015]

1. Uniform injection 2 ¢ < |0°, 90°]

2. Wide equatorial zone = Equatorial: g ¢ [20°, 90°]
Polar: 6 € [0°, 20°]

3. Narrow equatorial zone >Equatorial: ¢ ¢ [70°, 90°|
Polar: 6 € |0°,70°]

Wisp profiles extracted as in Schweizer et al 2013 from
a 3” slice in the upper hemisphere of intensity maps.
Data extracted with monthly frequency during 10 yr.
Results shown as plots of wisp local maxima radial
positions vs time.
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(2). Narrow polar cone® wide equatorlal zone 9
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wisps appear in both

cases

In Schweizer et al. no
Wisps are seen
within 6” in X-rays
and optical

Deprojected
velocity range:

0.08c £v<0.38c

From observations
0.lcSv < O 4c

X-ray particles accelerated in a narrow, low o, equatorial belt via Fermi .
Radio particles accelerated in a wider equatorial zone via driven magnetic reconnection




GOALS of NUI\/IERICAL MHD 2D AXISYMM MODELS

M High energy emission well reproduced
M Analysis of low energy emission = not strong constraints on radio particles nature,
but shows that wisps arise as a fluid property

M Multi band wisps analysis = Best case for X-ray wisps is injection in a narrow
equatorial belt (= Fermi | acceleration?), no strong constraint for radio particles.
They can be accelerated in a wider equatorial zone via driven magnetic reconnection.

OPEN PROBLEMS:

[ Radio particles origin = no strong constraints are found

[1 Magnetic field compression around polar axis = only due to simulation
dimensionality?

Complete 3D models needed!
First attempt by Porth et al 2014 (but only 70 yr of the Crab evolution
are simulated...)
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Preliminary!
Results of complete Crab’s 3D simulation with
PLUTO® are coming soon
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