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THESEUS aims at vastly increasing the discovery

space of the high energy transient phenomena
over the entire cosmic history.

The primary scientific goals are linked to the Early Universe ESA
Cosmic Vision theme:

How Did the Universe Originate
and What is it Made of ?

4.1 Early Universe
4.2 The Universe taking shape

4.3 The evolving violent Universe



GRBs within Cosmic Vision

The European community played a fundamental role in the enormous
progress in the field of the last 15 - 20 years (BeppoSAX, HETE-2, Swift, AGILE,
Fermi + enormous efforts in optical IR and radio follow-up)

In 2012, two European proposals for ESA Call for Small mission dedicated to
GRBs and all-sky monitoring: GAME (led by Italy, SDD-based cameras + CZT-
based camera + scintillator based detectors) and A-STAR (led by UK, lobster-
eye telescopes + CdTe detectors)

The White Paper on GRBs as probes of the early Universe submitted in
response to ESA Call for science theme for next L2/L3 missions (Amati, Tanvir,
et al., arXiv:1306.5259) was very well considered by ESA

ATHENA (ESA/L2, 2028): very high spectral resolution spectroscopic
observations of high redshift gamma-ray bursts (GRBs) to study metal
enrichment in the early Universe

ESA/M4: THESEUS (Early Universe through high-redshift GRBs + GRB physics,
sub-classes, etc. ), LOFT (M3 assessment study, GRBs as part of observatory
science), GAMMA-LIGHT, XIPE, ...


http://arxiv.org/abs/1306.5259

Italian leadership and contribution to THESEUS:

motivation and heritage

BeppoSAX (ltaly, +NL contribution) : X-ray afterglow emission ->
optical counterparts and host galaxies -> cosmological distance
scale, GRB-SN connection, X-ray flashes, Ep- Eiso (“Amati”)
correlation -> cosmological parameters and dark energy

HETE-2 (USA; ltalian contribution): deeper investigation of X-ray
flashes

Swift (USA, ltalian contribution): early afterglow phenomenology,
sub-energetic GRBs, ultra-long GRBs, soft long tail of short GRBs

AGILE (ltaly): timing of prompt emission + X-ray detections

Fermi (USA, Italian contribution): high energy emission, additional
spectral features -> crucial tests for emission physics, engine (+
testing quantum gravity ?)

Piship of large optical /NIR follow-up programmes (TNG, VLT, etc.)



Main scientific goals

a) Exploring the Early Universe
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A statistical sample of high—z GRBs can provide fundamental

information about:

* measure independently the cosmic star—formation rate, even
beyond the limits of current and future galaxy surveys
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* the number density and properties of low-mass galaxies

050904 F850LP |060522 F110W| 060927 F110W
2=6.29; Mg > 28.86 | Z=5.11;Mpg>28.13 | 7=5.47; M, > 28.57

080913 F160W|090423  F125W+F160W| 0904298 F160
7=6.73; Mjg>27.92 | 7=8:23; M,;>30.29 | Z7=9.4; M,;> 28.49

:l
Tanvir+12 _— =

Robertson&Ellis12

Even JWST and ELTs surveys will be not able to probe the faint end of the
galaxy Luminosity Function at high redshifts (z>6-8)



e the neutral hydrogen fraction

* the escape fraction of UV photons from high-z galaxies

e the early metallicity of the ISM and IGM and its evolution
Abundances, HI, dust, dynamics etc. even for very faint hosts. E.g. GRB 050730:

faint host (R>28.5), but z=3.97, [Fe/H]=-2 and low dust, from afterglow spectrum
(Chen et al. 2005; Starling et al. 2005).
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* the first generation of stars (pop Ill)

The first, metal—free stars (the so—called Poplll stars) can result in powerful GRBs
(e.g. Meszaros+10). GRBs offer a powerful route to directly identify such elusive
objects (even JWST will not be able to detect them directly) and study the galaxies

in which they are hosted.

Even indirectly, the role of Poplll stars in enriching the first galaxies with metals can be studied by
looking to the absorption features of Popll GRBs blowing out in a medium enriched by the first

Poplll supernovae (Wang+12).

More generally, what is the cosmic chemical evolution at early times?
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b) Performing an unprecedented deep survey of

the soft X-ray transient Universe in order to:

Fill the present gap in the discovery space
of new classes of transients events, thus
providing unexpected phenomena and
discoveries;

Provide a fundamental step forward in the
comprehension of the physics of various
classes of Galactic and extra-Galactic
transients, like, e.g.: tidal disruption events
TDE, magnetars/SGRs, SN shock break-out,
Soft X-ray Transients SFXTS, thermonuclear
bursts from accreting neutron stars, Novae,
dwarf novae, stellar flares, AGNs / Blazars);

Provide real time trigger and accurate (~1
arcmin within a few s) high-energy
transients for follow-up with next
generation optical, IR, radio, X-rays, TeV or
neutrino telescopes and identify
electromagnetic counterpart of detections
by next generation gravitational wave
detectors.
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unprecedented insights in the physics
and progenitors of GRBs and their
connection with peculiar core-collapse
Sne;

substantially increased detection rate
and characterization of sub-energetic
GRBs and X-Ray Flashes;

IR survey and guest observer
possibilities, thus allowing a strong
community involvement;

survey capabilities of transient
phenomena similar to the Large
Synoptic Survey Telescope (LSST) in
the optical: a remarkable scientific
sinergy can be anticipated.
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THESEUS Main Requirements

A full exploration of the early Universe requires the detection of
a factor 10 more GRBs (about 80-100) than currently available at
2>6

In order to efficiently classify and filter the triggers (no previous
experience had such a sensitivity in soft X-rays on a wide FOV), a
broad band spectral coverage is needed at high energies (in
addition the GRB phenomenon will be better characterized)

In order to identify, classify and study the high-z GRB
counterparts, an near-infrared (due to cosmological Ly-alpha
suppression) telescope is needed on board. It will provide
accurate positions, GRB redshifts, and GRB afterglows spectra
(R~1000).

An agile and autonomous platform (Swift-like) is required in
order to point at the GRB position quickly, as well as a prompt
downlink of GRB trigger, position and redshift



THESEUS payload

Soft X-ray Imager (SXI): a set of « Lobster-Eye » X-ray (0.3
- 6 keV) telescopes covering a total FOV of 1 sr field with
0.5 -1 arcmin source location accuracy, provided by a UK
led consortium (+ Czech Repubblic)

InfraRed Telescope (IRT): a 70 cm class near-infrared (up
to 2 microns) telescope (IRT) with imaging and moderate
spectral capabilities provided by a Spanish led
consortium (+ ESA, + Ireland ?)

X-Gamma-rays Spectrometer (XGS): non-imaging
spectrometer (XGS) based on SDD+Csl, covering the same
FOV than the Lobster telescope extending its energy
band up to 20 MeV. This instrument will be provided by
an Italian led consortium (+USA ?) (-> TECNO INAF 2014)

Payload Data Handling System (PDHS): Poland led
consortium (+ Denmark, Finland)



The Soft X-ray Imager (SXI)
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Energy band (keV) 0.3-5
Telescope type: Lobster eve
Optics aperture (mm?) 290x290
Optics configuration /x/ square pore NCPs
MCP size (mm?) 40=40
Focal length (mm) 300
Focal plane shape sphernical
Focal plane detectors CCD array
Size of each CCD (mm?) 61x61
Pixel size (um) 30
Pixel Number 1024 x 1024
Number of CCDs 4
Field of View (square deg) 542.8
Angular accuracy (best, worst) (arcsec) (<10, 105)

Table 3.1 — Specifications of each SXI module
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The X-Gamma-rays spectrometer (XGS)

SDD scintillator
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Italian contribution: technological heritage

e Scintillator-based detectors for high energy astrophysics:
BeppoSAX PDS & GRBM, INTEGRAL/PiCSIT, AGILE/MCAL (leading
roles of IASF — Bologna) + R&D projects funded by ASI

e SDD as detectors for high energy astrophysics and associated
electronics (ASIC): R&D projects funded by INFN, ASI, INAF

 Concept and earliest testing of SDD+Csl (“siswich”) (e.g.,
Marisaldi et al. 2005)

 Concept studies of next generation GRB Monitors for future
opportunities: supported by ASI-INAF contract during 2006-2011
(p.i. L. Amati)

* Innovation: SDD+Csl detection system, ASIC

e Development and testing of an XGS module prototype is
supported by TECNO INAF 2014
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Energy Band FOV Energy resolution ~ Peak eff. area  Source location ~ Operation

CGRO/BATSE 20-2000 keV open 10keV (100 keV) ~ ~1700 cm? >1.7 deg ended
Swift 15-150 keV 1.4 sr 7 keV (60 keV) ~2000 cm? 1—4 arcmin active
Fermi/GBM 8keV -40 MeV  open 10keV (100 keV) 126 cm? >3 deg active
Konus-WIND 20 keV - 15MeV  open 10 keV at 100 keV 120 cm? - active
BeppoSAX/WEC  2-28 keV 0.25 sr 1.2 keV (6 keV) 140cm? | arcmin ended
HETE-2/WXM 2-25 keV 0.8 sr 1.7 keV (6 keV) 350cm? 1-3 arcmin ended
THESEUS 0.3-20000 keV 1-1.4sr 300eV (6keV) 1500 cm? 0.5-1 arcmin 2025-2028 ?
SVOM 4keV -5MeV 1.5 sr 2 keV (60 keV) 1000 cm? 2-10 arcmin 2018-2022 7
UFFO-—p 1.5sr 2 keV (60 keV) 191 cm? 5-10 arcmin 2014-2018 ?
CALET/GBM 3sr 5 keV (60 keV) 68 cm’ —~ 2014-2018 ?

Table 2: Characteristics of§oe THESEUS X/gamma-ray instruments compared with the main past and present
GRB-dedicated instrumentsNCGRO/BATSE, Swift, Fermi/GBM, Konus—WIND), the two main instruments
capable of measuring GRB profapt emission down to 2 keV (BeppoSAX/WFC and HETE-2/WXM), and next
future GRB experiments under d&elopment or advanced study (SVOM, Lomonosov/UFFO-p, CALET/GBM).

+ Infrared telescope and
fast slewing !!!



] Physics of GRBs and other
high-energy transients

U It is recognized that the GRB
phenomenon can be understood only
going back to the study of the Prompt
Emission

(1 A very broad energy band down to
soft X-rays is needed.

1 Measurements down to a few keV
were provided in the past by BeppoSAX,
but a higher sensitivity and energy
resolution is urgently needed.

J Present GRB experiments are limited
to prompt emission > ~10 keV; future
(SVOM, CALET/GBM,UFFO,LOBSTER) >~
5-8keV

keV? (Photons cm ™ s keV™")

GRB 090618 — WFM+GBM: BB+PL (Black, Blue) vs. Band(Red)
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Figure 2.4: Sensitivity of the SXI (black curves) and XGS (red) vs. integration time. The solid curves assume a source column
density of 5x10%0 cnr? (i.e. well out of the Galactic plane and very little intrinsic absorption). The dotted curves assume a source
column density of 1022 cnr? (significant intrinsic absorption). The black dots are the peak fluxes for Swift BAT GRBs plotted
against T90/ 2. The flux in the soft band 0.3-10 kel” was estimated using the T90 BAT spectral fit including the absorption from
the XRT spectral fit. The red dots are those GRBs for which T90/ 2 is less than 1 second. The green dots are the initial fluxes and
times since trigger at the start of the Swift XRT GRB light-curves. The horizontal lines indicate the duration of the first time bin in
the XRT light-curve. The various shaded regions illustrate variability and flux regions for different types of transients and variable
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The InfraRed Telescope (IRT)

M10O=07m

M2 3= 0,23m

—1

Instrument (consortium)

Intermediote lmage Mane

13 Ydunw‘l Instrurnent

Image Pupl
{10enen) P

Filvers (ZYIH) " k= /

Detector Focal Mlane

¥ N

240 K 190 K | \
’/‘v‘ ”'
Telescope (industry) el wia ek S -
/ focus focal plane
300 MW @ 130 K -
Telescope type: Cassegrain

Primary & Secondary size:

700 mm & 230 mm

Material: S1C (for both optics and optical tube assembly)

Detector type: Teledyne Hawaii-2RG 2048 x 2048 pixels (18 [m each)

Imaging plate scale 0.3/ pixel

Field of view: 10°x 108 6’x6 271x 271

Resolution (A/AL): 2-3 (1maging) 20 (low-res) 1700 (high-res)
with 07.4 shit

Sensitivity (AB mag): H =225 (30s) H = 20.8 (300s) H = 19.3 (1800s)

Filters: ZYTH Prism VPH grating

Wavelength range (ltm): 0.7-1.8 (1imaging) 0.7-1.8 (low-res) 0.7-1.8 (lugh-res)

Total envelope size (mm): 800 @ x 1800

Power (W): 95

Mass (kg): 112.6




z=6.3 simulated IRT early afterglow spectrum Simulated IRT low-res afterglow spectra at range of redshifts
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Figure 2.6 — Left: a simulated IRT high resolution (R=1000) spectrum for a GRB at =06.3 observed at 1 hour post trigger
assuming a GRB similar to GRB 050903. The black spectrum bas host logINH)=21 and neutral fraction Fx=0.5 (and
metallicity 0.1solar).  The two models are: Red: log(NH)=21.3, Fx=0 Green: log(NH)=20.3, Fx=1. The IRT spectra are
capable for such GRBs to constrain parameters in addition to providing an accurate redshift. Right: simulated IRT low resolution
(R=20) spectra as a function of redshift for a GRB at the limiting magnitude AB mag 20.8 at =10, and by assuming a 20
minute exposure. The underlying (noise-free) model spectra in each case are shown as smooth, dashed lines. Even for difficult cases the
low-res spectroscapy should provide redshifts to a few percent precision or better. For many applications this is fine - eg. star
formation rate evolution.
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z=8.2 simulated E-ELT afterglow spectro

Fip. 1.4: simulated E-ELT 30 min spectrum of a
faint GRB afterglow observed after ~1 day. The
S/N provides exquisite abundance determinations
while fitting the Ly-a damping wing simultaneously
Jixces the IGM neutral fraction and the host HI
column density, as illustrated by the two extreme
models, a pure 100% neuntral IGM (green,) and
best-fit host absorption with a fully ionized IGM
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Payload accomodation and budgets

PAYLOAD MODULE

SXT 90.0 20% 18.0 108.0
XGS 70.5 20% 14.1 84.6
IRT 112.6 20% 22.5 135.1
PDHU+PSU + harness 18.0 20% 3.6 21.6
Total P/IL Module Mass 283.1 26.6 3493
Total Service Module Mass (kg) 481.1

Total Payload Module Mass (kg) 349.5

System level margin (20%) 166.1

Dry Mass at launch (kg) 996.5

Propellant 16.0

Launcher adapter 77.0

Total mass at launch (kg) 1089.5




Mission profile

Launch with VEGA into LEO (< 5°, ~600
km)

Spacecraft slewing capabilities (30° < 4
min)

Pointing anti-sun + ~polar

Malindi antenna (+ Alcantara ?)

Prompt downlink options :
NASA/TDRSS, ESA/EDRS, WHF network,
IRIDIUM network, ORBCOMM

MOC, SOC -> ESA

SDC -> ASDC (+FSC)




*

Conclusions

The relevance of GRB science for several fields of astrophysics, for
cosmology, for the large observational facilities of the 2020s (EELT, SKA,
JWST, LSST, ATHENA, CTA, gravitational waves and neutrino detectors) and
the high experience and level of the European GRB community (science,
observations and technology) strongly push for an ESA-led GRB oriented
mission

THESEUS will fully exploit GRBs as powerful and unique tools to
investigate the early universe and will provide us with unprecedented
clues to GRB physics and sub-classes.

THESEUS will also vastly increase the discovery space of the high energy
transient phenomena over the entire cosmic history.

The THESEUS proposal for ESA is a unique occasion for the worldwide GRB
and time-domain astronomy community and for, for Italy, of exploiting
the unique technological and scientific heritage in GRB / transients field

THESEUS will be submitted to M5 (December 2015 ?), th consortium is re-
organizing and the proposal being significantly improved. Please, provide
your support through the web page: http://goo.gl/forms/PFUfgjgNxG or contact
amati@iasfbo.inaf.it



