München, January 31, 2018 GW meeting # SON OF X-SHOOTER SOXS SERGIO CAMPANA OSSERVATORIO ASTRONOMICO DI BRERA ON BEHALF OF THE SOXS CONSORTIUM ### HISTORY ESO call for new instruments at NTT (06/2014) Proposal submission (02/2015) SOXS selected by ESO (05/2015) out of 19 Similar to X-shooter .. but also different, only two arms with overlap around 850 nm to cross-calibrate spectra ## SOXS@NTT IN A NUTSHELL - Broad band spectrograph 350-2000 nm - R~4,500 (3,500-6,000) - Two arms (UV-VIS + NIR) - S/N~10 spectrum 1 hr exposure for R~20 - Acquisition camera to perform photometry ugrizY (3'x3') ## WHY SOXS? New deeper survey: PanSTARSS, DES, ZTF, LSST, ... Space optical missions: Gaia, EUCLID, ... Space high-energy missions: Swift, Fermi, SVOM, ... Radio new facilities: MeerKAT, SKA, ... VHE: CTA Messengers: aLIGO-Virgo, KM3Net, ANTARES, ... SOXS@NTT will have ~170-180 n/yr (for 5 yr) ~3,000 - 4,000 spectra/yr # SPECTROSCOPIC BOTTLENECK New transients need to be classified (& redshift) and studied over time in details - PESSTO/ePESSTO (Large ESO program 90n/yr): - initially focussed on SN, now open to more science cases - service classification activity - 64 papers in 5 years and ~600 ATel ## SOXS SCIENCE CASES - Classification (service) - SN (all flavours) - GW & v - TDE & Nuclear transients - GRB & FRB - X-ray binaries & novae, magnetars - Asteroids & Comets - Young Stellar Objects & stars - Blazars & AGN - Unknown # SOXS (ON PAPER) # **UV-VIS ARM** # **UV-VIS ARM** | | u | g | r | i | |---------------------|-------|-------|-------|-------| | Camera | 0.920 | 0.920 | 0.920 | 0.920 | | UV-VIS Spectrograph | 0.656 | 0.668 | 0.655 | 0.652 | | No Contingency | 0.756 | 0.770 | 0.755 | 0.751 | | Common Path | 0.820 | 0.820 | 0.820 | 0.820 | | Telescope | 0.510 | 0.510 | 0.510 | 0.510 | | Overall | 0.274 | 0.279 | 0.274 | 0.272 | | No Contingency | 0.316 | 0.322 | 0.316 | 0.314 | | ORDER | FSR | MIN WL | BLAZE WL | MAX WL | |-------|---------|--------|----------|---------| | 10 | (0.193) | (1833) | 1.930 | (2.016) | | 11 | 0.159 | 1.674 | 1.754 | 1.834 | | 12 | 0.134 | 1.541 | 1.608 | 1.675 | | 13 | 0.114 | 1.427 | 1.484 | 1.541 | | 14 | 0.098 | 1.329 | 1.378 | 1.428 | | 15 | 0.086 | 1.244 | 1.286 | 1.329 | | 16 | 0.075 | 1.168 | 1.206 | 1.244 | | 17 | 0.067 | 1.102 | 1.135 | 1.168 | | 18 | 0.06 | 1.042 | 1.072 | 1.102 | | 19 | 0.053 | 0.989 | 1.016 | 1.042 | | 20 | 0.048 | 0.941 | 0.965 | 0.989 | | 21 | 0.044 | 0.897 | 0.919 | 0.941 | | 22 | 0.04 | 0.857 | 0.877 | 0.897 | | 23 | 0.036 | 0.821 | 0.839 | 0.857 | | 24 | 0.034 | 0.787 | 0.804 | 0.821 | # NIR ARM +200 mm # TIMELINE (TIGHT!) #### Date to be operational on sky: end 2020 PDR FDR July 2017, 21-22 FDR July 2018 End of Procurement April 2019 AIT & Test in Europe Instrument in Chile August 2020 End of Commissioning December 2020 LSST - CTA - SKA good timing with **GW experiments** (4 detectors) - ## **CONSORTIUM STRUCTURE** - E. Cappellaro (INAF-OAPadova) Italy - M. Della Valle (INAF-OANapoli) Italy - A. Gal-Yam (Weizmann) Israel - S. Smartt (Univ. Belfast) UK - I. Arcavi (Tel Aviv University) Israel - S. Mattila (FINCA) Finland - J. Fynbo (NBI) Denmark - S. Campana (INAF-OABrera) Italy #### RESPONSIBILITIES Italy ~ 50% (CP, NIR-arm, integration, management, etc.) Israel ~25% (UV-VIS arm optics and mechanics) Chile ~10% (Acquisition camera) UK ~10% (VIS-CCD, reduction pipeline) Finland ~5% (Calibration Unit) ### **OPERATIONS** ESO will reward the SOXS consortium with NTT observing time: now ePESSTO 90n/yr — future SOXS ~180n/yr. SOXS consortium responsible for the operations. Flexible schedule of a day-by-day basis (one day in advance) SOXS+ESO targets). SOXS team (3 people) on weekly rounds to cope with observations (schedule, classification, etc.) and on call for reaction to GW (GRBs, etc.) with fast (<1hr) ToO and problems. ESO-TNO to carry out observations. <5% of the consortium time open to the community as ToO (Swift-like) observations (public data). Relevant information (classification, peculiar sources, etc.) announced in real time through GCN, ATel, IAUC, etc. Consortium data public after a short (6-12 months TBD) proprietary period. ## SOXS FOR GW High priority targets Spectroscopic study of GW candidates Deep follow-up of GW counterparts ## SUMMARY SOXS @ NTT from 2021 Medium resolution (~4,500) Broad-band (350-2000 nm) ugrizY imaging (3'x3') Dedicated to transient astrophysics Possibility to trigger every night Fast reaction (probably the only instrument mounted at NTT) ### MESSENGER N.166 A call for new instruments was made in 2014, aimed primarily at replacing the ageing instrumentation at the NTT. The medium-resolution (R = 5000) optical and near-infrared (0.4–1.8 µm) spectrograph SOXS (Son of X-shooter) was selected as the future workhorse instrument at the NTT. SOXS addresses in particular — but not exclusively — the needs of the timedomain research community. Furthermore, the high-speed, triple-beam imager ULTRACAM, a visitor instrument, was offered for up to 25% of NTT time in exchange for cash contributions to NTT operations. In addition, the Near Infra-Red Planet Searcher (NIRPS) was selected as the near-infrared extension of HARPS on the 3.6-metre telescope, creating the most powerful optical to near-infrared precision radial velocity machine for exoplanet research in the southern hemisphere. The availability of SOXS on the NTT (and X-shooter on the VLT) will put the ESO community in an excellent position to follow up the most interesting transients to be discovered by the LSST from 2023 onwards. The combination of HARPS and NIRPS on the 3.6-metre telescope is crucial for providing critical ground-based complementary data for the ESA/Swiss mission CHaracterising ExOPlanet Satellite (CHEOPS) and for PLATO. The extension of La Silla operations beyond 2020 as described above requires both NIRPS and SOXS to be successful. If NIRPS were to fail for some unforeseen reason, then the 3.6-metre telescope with HARPS would still be valuable for exoplanet research, but it would be reasonable for ESO to require external contributions to the operation costs. If SOXS were to fail, then the future of the NTT would be in serious doubt. This would threaten the viability of the entire La Silla operations model, as it is not cost-effective for ESO to run the complete site for a single medium-sized telescope. External funding or support could come from (consortia of) institutes in the Member States, or from partners elsewhere including the Host State Chile. | Source class | Obs.
Time | Key project & Aim | |-----------------------------|--------------------------------|--| | All | 500 hr | Fast characterization of transients from other surveys | | Open | $500 \widetilde{\mathrm{hr}}$ | Open time for spectroscopic ToO observations | | Asteroids & TNO | 200 <u>hr</u> | Characterization of populations of minor bodies, input to models of solar system formation and mitigation of impact hazard | | Comets and new comets | 100 <u>hr</u> | | | Planetary transits | 200 <u>hr</u> | Monitor of >5 bright stars for primary and secondary eclipses | | Young stellar objects | 100 <u>hr</u> | | | Stars | 100 <u>hr</u> | | | X-ray binary transients | 200 <u>hr</u> | Derive the mass function of >10 XRB transients in outburst | | Magnetars | 50 hr | Fast follow up of >10 magnetar's flares | | Novae | 100 <u>hr</u> | | | ILOT | $300 \mathrm{hr}$ | | | SN <u>Ia</u> | $500\mathrm{hr}$ | Statistical sample of >150 SNe Ia in the low-z Universe to study | | | | the local properties and dust extinction | | CC-SN | $500 \mathrm{hr}$ | | | Super-luminous supernovae | $500\mathrm{hr}$ | Build a statistical spectroscopic sample of SLSN | | Prompt GRB | $100 \underline{\text{hr}}$ | Fast spectroscopy of >50 GRBs to probe the galaxy host medium | | High-z ($z>5$) GRB | $50 \mathrm{hr}$ | Transmission spectra of >5 high-redshift GRBs | | GRB- <u>SNe</u> | 100 <u>hr</u> | Follow the evolution of >5 SN associated to nearby (z <0.3) GRBs | | Active galactic nuclei | $200 \mathrm{hr}$ | | | and blazars | | | | Tidal disruption events | 100 <u>hr</u> | Study the spectral evolution of >10 TDEs | | Gravitational Wave triggers | $200\mathrm{hr}$ | Spectroscopic follow up of candidate GW counterparts. This | | | | includes kilonovae from short GRBs. | | Neutrino triggers | 100 <u>hr</u> | Spectroscopic follow up of candidate neutrino counterparts | | Unknown | 300 hr | |