

Son Of X-Shooter at ESO/NTT

Sergio Campana Osservatorio astronomico di Brera On behalf of a large collaboration

Monteporzio Catone - CNOC IX - 24 settembre 2015

What is SOXS

- ESO call for new instruments at NTT (06/2014)
- Proposal submission (02/2015)
- SOXS selected by ESO (05/2015) out of 19

	UVB			VIS			NIR	
Slit width	Resolution	Sampling	Slit width	Resolution	Sampling	Slit width	Resolution	Sampling
('')	$(\lambda/\delta\lambda)$	(pix/FWHM)	('')	$(\lambda/\delta\lambda)$	(pix/FWHM)	('')	$(\lambda/\delta\lambda)$	(pix/FWHM)
0.5	9100	3.5	0.4	17400	3.0	0.4	11300	2.0
0.8	6300	5.2	0.7	11000	4.8	0.6	8100	2.8
1.0	5100	6.3	0.9	8800	6.0	0.9	5600	4.0
1.3	4000	8.1	1.2	6700	7.9	1.2	4300	5.3
1.6	3300	9.9	1.5	5400	9.7	1.5	3500	6.6
IFU	7900	4.1	IFU	12600	4.2	IFU	8100	2.8

Band	U	В	V	R	Ι	J	Н	K'
mag	21.5	21.7	21.7	21.6	21.2	20.5	20.8	19.3

Continuum spectrum S/N=10 - 1 hr exposure

NOT Transient Explorer – A new work-horse for the Nordic Optical Telescope

- A cross-dispersed spectrograph covering 350-1700 nm, resolution ~4000 (possibly with also a higher-res mode), single slit (with different choices for the slit width), including ADC and efficient enough to be sky-limited in 30 min integration.
 - Visible imager with 5-6 arcmin FOV, 2k x 2k detector, sampling 0.15-0.18 arcsec per pixel.
 - Near-IR imager using a 2k x 2k HAWAII-II detector with same FOV and sampling as in the visible.
- De-scoped version: imaging reduced to a visible slit-viewing camera with FOV of 3 arcmin (similar to StanCam).

Nordic (Denmark, Sweden, etc.) + Italian collaboration

SOXS Science case: the transient sky

Just a few science cases

- Minor planets and asteroids
- Young stellar objects
- Planetary transits
- X-ray binary transients
- Novae
- Magnatars
- Supernovae (Ia, CC)
- GRB
- TeV transients
- GW & neutrino EM counterparts
- Radio sky transients & fast radio bursts

Discovery space

First SN shock break out

Major outburst 2 yr before the (probable) SN explosion

Water vapor in the atmosphere of a transiting planet

The most distant object in the Universe (at the time of discovery)

A working example

During 2005-2013 Nature published ~180 astronomical papers with more than 50 citations.

Among them **36%** are on transients objects.

PESSTO An already working example

• ~20% of selected candidates from SN searches enter into the observing queue

~ 50% of the transients are eventually observed and classified
90% remain unclassified

GAIA

1S

coming

		alerting object	5-yrs (Entire Mission)	main location
	_ [Supernovae <19 mag	6000	out of plane
		Microlensing (bulge)	~1000	bulge/plane
	ting	Microlensing (all sky)	~700	out of plane
	erest	GRB optical counterparts	~hundreds (?)	out of plane
	Ĕ	R CrB-type stars	~hundreds (?)	gal. plane
		CN	150	gal. plane
		FU Ori	14	gal. plane
Γ	_ [Eclipsing binaries	a million (?)	gal. plane
(2)	2(5)	AGNs	500,000 (?)	out of plane
	ant:	Asteroids	thousands (?)	out of plane
	amir	Be stars	thousands (?)	gal. plane
tur	cont	Long period variables/Miras	thousands (?)	gal. plane
L		M-dwarf flares	2000	gal. plane
		DN (U Gem) (except rare big flares)	500 (?)	gal. plane

GAIA Transient Alerts

What is SOXS

Spectroscopic machine for the transient sky. Even now with PESSTO in place >70% of newly discovered transients remain without spectroscopic follow-up.

In the near future years there will be many <u>imaging</u> survey wide-field telescopes (iPTF, DES, Pan-STARRS, LSST) as well as high-energy transients (Swift, INTEGRAL, MAXI), GAIA-alters GW-alters, TeV alerts, etc. but very limited spectroscopic follow-up

SOXS @ NTT

We propose to build and operate a spectroscopic facility, SOXS (Son of X-Shooter), with a wide spectral coverage (0.35-1.75 μ m) and good spectral resolution (R~4,500) able to characterize and follow-up in depth any kind of transient source

A possible optical layout of the Common Path

SOXS @ NTT

Initial performances

BLUE arm

0.5 arcsec box

0 and ±12arcsec positions

BLUE spectrograph

Initial performances

RED arm

0.5 arcsec box

0 and ± 12 arcsec positions

RED spectrograph

SOXS performances

• Goal:

continuum spectrum R~20-20.5 S/N=10 in 1 hr

This nicely match limiting magnitude of current (e.g. iPTF) synoptic surveys

"Extended" guiding camera to use as imaging (optical) instrument >3 arcmin FOV.

Source class

All Open Asteroids & TNO

Comets and new comets
Planetary transits
Young stellar objects
Stars
X-ray binary transients
Magnetars
Novae
ILOT
SN La

CC-SN Super-luminous supernovae Prompt GRB High-z (z>5) GRB GRB-SNe Active galactic nuclei and blazars Tidal disruption events Gravitational Wave triggers

Neutrino	triggers

Unknown

Obs. Key project & Aim Time

- 500 hr Fast characterization of transients from other surveys
- 500 hr Open time for spectroscopic ToO observations
- 200 hr Characterization of populations of minor bodies, input to models of solar system formation and mitigation of impact hazard

200 hr Monitor of >5 bright stars for primary and secondary eclipses

200 hr Derive the mass function of >10 XRB transients in outburst 50 hr Fast follow up of >10 magnetar's flares

100 hr 300 hr

100 hr

100 <u>hr</u> 100 hr

500 hr Statistical sample of >150 SNe Ia in the low-z Universe to study the local properties and dust extinction

500 <u>hr</u>

- 500 hr Build a statistical spectroscopic sample of SLSN
- 100 hr Fast spectroscopy of >50 GRBs to probe the galaxy host medium
- 50 hr Transmission spectra of >5 high-redshift GRBs
- 100 hr Follow the evolution of >5 SN associated to nearby (z<0.3) GRBs 200 hr
- 100 hr Study the spectral evolution of >10 TDEs
- 200 hr Spectroscopic follow up of candidate GW counterparts. This includes kilonovae from short GRBs.
- 100 hr Spectroscopic follow up of candidate neutrino counterparts

300 hr

Consortium structure

Science Board

S. Campana (INAF-OABrera) - Italy E. Cappellaro (INAF-OAPadova) - Italy M. Della Valle (INAF-OANapoli) - Italy A. De Ugarte Postigo (IAA-CSIS) - Spain J. Fynbo (Dark-NBI) - Denmark M. Hamuy (Millenium Inst.) - Chile G. Pignata (Millenium Inst.) - Chile S. Smartt (Univ. Belfast) – UK S. Basa (LAM) – France L. Le Guillou (LNPHE) – France B. Schmidt (ANU) – Australia M. Colless (ANU) – Australia A. Gal-Yam (Weizmann) – Israel S. Mattila (FINCA) – Finland

Funds

>84% secure funds (as most of the projects)

Remaining funds have been/are going to be asked for at different national agencies

Timeline 2016-2020

Project phase	Aprrox. start	Approx end	Duration
Phase A	12/2015	04/2016	5 months
Phase B	05/2016	10/2016	5 months
Phase C	11/2016	08/2017	10 months
Phase D	09/2017	12/2019	28 months
Phase E	12/2019	>2023	

Good timing with CTA (and SKA)

ESO will reward the consortium with NTT observing time.

We will start from ~2018 with existing instruments (EFOSC2+SOFI) and when SOXS will be ready (mid-2019) we will continue with SOXS.

We will likely have ~150 n/yr. Observers on-site and instantaneous response to fast alerts.

Data policy

<5% of the consortium time open to the community as fast ToO (Swift-like) observations (public data)

Relevant information (redshift, peculiar sources, etc.) announced in real time through GCN, ATEL, IAUC, etc.

Consortium data public after a short (1-3 months TBD) proprietary period.

Thanks