Evolutionary Channels for Gamma-Ray Burst Progenitors

Philipp Podsiadlowski (Oxford)

- I. Progenitor Constraints
- II. Single and Binary Progenitor Scenarios
- III. Key Issues (and Tests)

Constraints (I)

Event Rates (for reference galaxy)

- LGRBs: $(10^{-6}-)10^{-5}\,\mathrm{yr}^{-1}$ (faint GRBs: $\times~5-10$?)
- ullet core-collapse supernovae: $\sim 10^{-2}\,\mathrm{yr}^{-1}$
- ullet SNe Ib/Ic (normal!): $\sim 10^{-3}\,\mathrm{yr}^{-1}$ (mostly relatively low-mass binaries)
- ullet SNe Ic (with engine): $\sim 10^{-5}\,\mathrm{yr}^{-1}$
- ullet magnetar (= magnetic pulsar): $\sim 10^{-3}\,\mathrm{yr}^{-1}$
- ullet "magnetar" (= engine): $\sim 10^{-5}$ (LGRB), $\sim 10^{-6}\,\mathrm{yr^{-1}}$ (SLSNe)
 - ▷ GRBs are rare events!
 - → GRBs require very special evolution/
 circumstances (i.e. not just single massive stars, but stars that are special; i.e. rotation/low Z; binarity)

Constraints (II)

LGRB SNe are SNe Ic

• stripped stars that have lost their hydrogen (!) and helium (?) envelopes

LGRBs prefer lower-metallicity environments

- ullet mostly ${f Z} < 1/2\,{f Z}_{\odot}$ (but up to $\sim 2\,{f Z}_{\odot}$)
- progenitor constraint or environment constraint (e.g. star formation)?

The progenitors are quite massive: $\rm M_{MS}>20\,M_{\odot}$ (unlike normal SNe Ib/c)

The progenitors have rapidly rotating "cores" (consensus)

- ullet critical specific angular momentum (at $\sim 2\,{
 m M}_\odot$)
 - \triangleright models with disk: $j\sim 10^{16}\,cm^2\,s^{-1}$
 - ▷ magnetar: a bit less

The Progenitor – LGRB Connection

- popular working hypothesis: long-duration GRBs are associated with the collapse of a rapidly rotating core/star without hydrogen envelope ("collapsar" models [Woosley, MacFadyen])
- similar in magnetar scenarios?

Collapse timescales

- ullet central (engine) timescale: $\sim 10^{-3}\,\mathrm{s}$
- ullet core-collapse timescale: $\sim 100\,\mathrm{s}$ (\rightarrow sets overall duration)

relativistic jet

Taylor, Miller & Podsiadlowski (2010)

(using progenitor models from Fryer & Heger (2006))

Taylor, Miller & Podsiadlowski (2010)

Single Star Models

(Yoon & Langer 2005; Woosley & Heger 2006)

Maeder (1987)

Basic Idea: Rapid Rotation

- homogeneous evolution for very rapily rotating MS stars
- stars evolve to the blue (i.e. skip red-giant phase) (Maeder 1987)

Yoon & Langer (2005)

- ullet requires rapid initial rotation and low mass-loss rate to avoid spin down o low metallicity ($Z \simeq 1/4 \, Z_\odot$)
- the progenitor retains a significant amount of helium

Binary Star Models

- orbital angular momentum provides a natural reservoir of angular momentum
- two types of binary models
- models that produce a "star" with a rapidly rotating core (similar to single-star models)
 - > accretion models (+ supernova breakup) (e.g. Cantiello), main-sequence mergers, tidal spin-up models
- dynamical models (e.g. merger of He star with compact object)
 - \rightarrow no extended envelope (flattened disk-like structure)

but: stars in binaries follow the same rules as single stars

- > mass loss causes the loss of angular momentum
 - \rightarrow lower metallicity generally favoured
- ▶ late interaction often favourable (case C)
- ⊳ most models contain helium

Tidal Spin-Up Models

- in a close binary, a massive companion can by spun up by tides (Izzard, Detmers, Yoon, van den Heuvel)
- requires relatively compact binary: $P_{crit} \leq 10 \, hr$
- ullet prototype: Cygnus X-3? (WR + NS/BH binary with $P_{orb} = 4.8 \, hr$)

Core spin-up?

yes, in 10⁴ yr (Spruit formalism)
 (Detmers et al. 2008)

but: at solar metallicity

- $\begin{array}{l} \triangleright \mbox{ mass loss causes orbital widening} \\ (t_{ML} < t_{spin-up}) \mbox{ (and tidal spin-down!)} \\ \mbox{ or drasting orbital shrinking} \\ (t_{ML} < t_{spin-up}) \mbox{ and likely merger} \\ \end{array}$
- need to go to lower metallicity (lower mass loss) or later initial interaction (case C)
- channel to produce WR + NS/BH mergers (Fryer & Woosley 1998)

Table 2. Formation rates for each possible GRB progenitor type, for $\lambda = 0.5$.

Scenario	Type	Fate	Birthrate [yr ⁻¹]
A	He-shell RLOF	CO-BH merger	5.64×10^{-6}
В	pre He-shell RLOF	He-BH merger	3.83×10^{-5}
C	CO + BH	collapsar?	1.39×10^{-7}

Detmers et al. (2008)

Binary Merger Scenarios

Types (I)

- A. mergers of compact objects
 (NS/BHs) with less compact objects
 (WD, He star, CO star)
 - \rightarrow trigger GRB
 - ▶ potential problem: too much angular momentum
- B. mergers of non-compact objects
 - → rapidly rotating massive star (similar to single-star model)

Types (II)

- 1. merger driven by unstable mass transfer or caused by supernova kick
- 2. merger inside common envelope
 - ▶ Issue: how to merge and eject common envelope?

Envelope Ejected Primary Collapse

NS/BH Kicked into Helium Companion

Fryer (2006)

He

Helium (CO) Star Mergers (Fryer & Heger 2006)

- near equal-mass binary components
- \rightarrow secondary evolves off the main sequence before binary interaction
 - merger in common envelope \rightarrow rapidly rotating helium star

but: long WR phase \rightarrow slow-down?

better (and more probable!) merger of star with CO core and helium star (i.e. case C)

 \triangleright short remaining lifetime \rightarrow no spin-down

Evolution to Collapse GRB ?

Fryer & Heger (2006)

Explosive Common-Envelope Ejection

- discovered by Natasha Ivanova when studying the slow merger of massive stars
- spiralling secondary fills its Roche lobe inside common envelope (CE)
 - → mass transfer from secondary to the core of the supergiant
 - \rightarrow H-rich stream penetrates helium core
- for large mass ratio:
 - ightarrow sudden mixing of H into very hot layer (few 10⁸ K) ightarrow nuclear runaway (hot CNO cycle)
 - \rightarrow rapid expansion of He layer and ultimate ejection of He-rich shell and rest of envelope

- energy source for CE ejection is nuclear energy (not orbital energy) →
 new CE ejection mechanism (application to short-period black-hole binaries, Nova Sco)
- ullet works best for relatively low-mass companions ($\lesssim 3\,\mathrm{M}_\odot$)

Metallicity Effects

- basic principle: lower metallicity \rightarrow lower wind mass loss \rightarrow less spin down
- helpful in most models, but to different degrees
 - \triangleright homogeneous, single-star models: essential $(\mathbf{Z} \leq 1/4\,\mathbf{Z}_{\odot})$
 - ▶ most binary models: useful/favoured (also caseC more frequent at low Z)
 - b dynamical mergers with compact components:
 not directly important

The Type Ic Problem

- most models predict significant amounts of helium at the time of explosion (except ECEE model, CO + compact mergers)
- how much helium can be hidden in a SN Ic?
- helium is excited non-thermally
- key: location of helium relative to radioactive decay products

Nomoto et al.

The Circumstellar Medium Structure

- different models make different predictions on the CSM

 - ▷ case C binary models: recent CE ejection (10^{18} cm), short Wolf-Rayet phase → hot wind bubble (constant ρ ?)
 - ▷ compact mergers: little CSM?

van Marle & Langer (2008)

A Unified Model (for discussion)

Supernovae with Engines (no normal GRB; faint GRB?)

• collapsar engine, but jet fails to get out

some issues:

- > reason for failure: envelope mass/structure? Models with or without envelope?
- b Why are they more common at larger Z? (more mass loss, lower rotation?)
- ▶ Different energetics?

GRBs with Supernovae

- collapsar with successful GRB jet
- progenitors have relatively massive rapidly rotating CO cores (more massive stars)

some issues:

- ▶ What ejects the envelope? (supernova mechanism)
- ▶ Where is the Ni produced?

Type I Superluminous Supernovae with Fast Decays

- similar to above, but with lower-mass final cores
- \rightarrow form magnetar rather than black hole