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Analytic 
Estimates 

•  First Pass, an expanding 
sphere: 

•  If we assume adiabatic 
expansion: 

•  What is missing?  
 Entropy at photosphere is not 

constant:  Transport, 56Ni 
decay, shock heating. 

 Photosphere doesn’t expand 
with ejecta.  Is a photosphere 
even well-defined? 



Deviations from adiabatic assumption (Energy not 
dominated by thermal energy): 
•  Energy sources:  56Ni decay, Shock Heating 
•  Cooling (diffusion timescale important) 
•  Arnett et al. (1980,1982) produced semi-analytic 

solutions incorporating 56Ni decay and cooling. 
•  For a simple sphere, shock heating can be estimated by: 

Including these effects already pushes toward semi-analytic 
solutions and most still make simplifying assumptions on 
the opacities.  In the 80s, we started using simulations to 
estimate light curves. 



Applying Early Light-Curve Models 
Litvinova and Nadezhin (1985) derived relations for ejecta mass (m), radius (r) 
and explosion energy (E) as a function of V magnitude, time since explosion (t) 
and photospheric velocity (v) based on their simulations: 
• lg(E(foe)) = 0.135 V + 2.34lg(t) +3.13lg(v) -4.205 
• lg(M(solar)) = 0.234 V + 2.91lg(t) + 1.96lg(v) -1.829 
• Lg(R(solar)) = -0.572V – 1.07lg(t)-2.74lg(v) -3.350 

Hamuy (2003) fits with this formulae predict extremely high masses (too high to be 
believed). 



Breakout Analytics 
•  Shock Breakout also has the potential to probe the star: 

•  When vshock < vdiff, shock breakout occurs.  With the 
shock velocity and time of shock breakout, we can 
measure the stellar radius and density. 

•  This is an order of magnitude estimate.   Worse yet, 
there is not a single photosphere for all wavelengths. 



Difficulties in Modeling 
Supernovae 

•  Initial Conditions 
 Progenitor structure, circumstellar medium (progenitor 

mass ejections), explosion energy, explosion asymmetry 
•  Radiation Transport 
 Simplifications in solving the Boltzmann Equation 
 Opacities:  number of levels, LTE vs. NLTE, steady state 

approximations 
  Ion/electron coupling 
•  Radiation Hydrodynamics 
  1T, 2T, 3T (radiation/matter decupling) 
 Hydrodynamic shocks and radiation 
 Radiation effects on hydrodynamics 



Shell Burning 

•  Shell burning 
can be explosive 
(Smith & Arnett 
2013, Arnett et 
al. 2014, Herwig 
et al. 2014).  
This will alter the 
core masses as 
well as the 
circumstellar 
medium. 



Stellar 
Models 

Key 

•  New mixing algorithms may 
burn helium (through more 
dynamic shell burning), 
increasing the Ic/Ib ratio 
(Frey et al. 2013) 



Binaries and mass loss 
•  Binary searches in clusters suggest that >50% of 

massive stars are in close binaries (Kobulnicky et al. 
2012, Sana et al. 2012). 

•  Mass transfer, Common envelope will affect 
circumstellar media and, in some cases, stellar 
structure. 

•  The strength and asymmetries in wind mass loss has 
also changed over the last decade. 

•  All these, mixing, winds, binary effects, can dramatically 
alter the light curves and we have a lot of work to 
understand these effects. 



Radiation Transport 
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Scattering Term 

Streaming and Removal Term 

Source Term 

• Average over angle:   
 First moment:  diffusion 
 Second moment: Variable Eddington Factor  

• Average over Energy Group:  Gray (Rosseland, Planck) 
• Remove time dependent term 
• Ignore Spatial Terms 



Accurate Opacities critical:  the kilanova 
example 

•   The presence of heavy elements 
at such cold temperatures requires 
the calculation of near-neutral ions 
with many (> 50) bound electrons.  

•   Furthermore, the presence of the 
4f4 subshell (lanthanides) requires 
the seniority quantum number to 
properly account for the angular 
momentum coupling when 
calculating the fine-structure levels 
(extra code development was 
required to obtain atomic structure) 

•   Just 25 configurations leads to 
27,000 levels and 300,000,000 
lines. 
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We are missing level 
states and these 
calculations still 
assumes LTE  

and steady state!  



Physics of Shock Breakout:  
Understanding the 

Photosphere 

Breakout timing is 
wavelength dependent, 
averaging over angle will 
cause errors. 
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Radiation 
Hydrodynamics 

in Shock 
Breakout 

•  Even when the 
radiation is 
trapped, it can 
lead the shock – 
the shock position 
moves faster than 
Sedov solution 
would predict. 
•  After breakout, 
the radiation 
begins to decouple 
from the material. 



Hydrodynamic Shocks can Drive 
Emission:  For massive star progenitors, 

the circumstellar medium is king! 

PI SNe 



We can still infer extreme conditions, but details more 
difficult.  For example, Ofek’s basic conclusions for SN2010jl 

still hold:  strong explosion, large circumstellar mass. 



Electron/Ion Decoupling 
As the density 
drops, the 
electrons are no 
longer coupled to 
the ions. 
e.g. in SN 2010jl, 
the X-ray stayed 
bright for over 2 
years!  With the 
expected 
densities (even 
the large shell), 
the electron 
“temperature” 
will be much 
lower than the 
ion temperature.  17 



Testing our 
codes:  Physics 
experiments of 
Shock Breakout 

•  The Univ. of Michigan 
CRASH center 
developed an 
experiment to test 
shock breakout.   

•  This experiment 
demonstrated many of 
the difficulties with 
modeling shock 
breakout:  radiation 
pre-heat, turbulence, 
…. 

Density in 
Crash 

experiment 
(Cassio 

Calculations):  
Fatenejad et 

al.  



Opacity Experiments 
•  Early results 

showed good 
agreement with iron 
measurements, but 
the most recent iron  
experiments do not 
agree with state-of-
the-art atomic 
physics. 

•  Kurucz results have 
trouble getting 
agreement with the  
atomic physics 
community.  

Nagayama et al. 2012 



Modeling Transients 
•  All current efforts modeling astrophysical 

transients make simplifying assumptions in the 
progenitors, transport, hydrodynamics coupling 
and/or opacities. 

•  With these uncertainties, it is often difficult to find 
a unique solution (progenitor mass, explosion 
energy) for a given observed transient. 

•  We are in a unique position to tie laboratory 
experiments to our astrophysics studies and 
both fields can learn from each other. 


