Modeling SN Light Curves and Spectra: Clues to the Progenitor

Chris Fryer (LANL) Wes Even, Chris Fontes, Lucy Frey, Aimee Hungerford, Jarrett Johnson, Joe Smidt, Dan Whalen

>What we can do or not do with analytics

- Difficulties in modeling
 - Initial Conditions
 - Transport issues: Transport, opacities, coupling
 - Radiation hydrodynamics
- ➢Experiments

• First Pass, an expanding sphere:

 $L = 4\pi r^2 \sigma T^4$

- If we assume adiabatic expansion:
- $S \propto aT^3/\rho \to T \propto S^{1/3}M^{1/3}r^{-1}$ $\to L \propto r^{-2}M^{4/3}S^{1/3}$
 - What is missing?
 - Entropy at photosphere is not constant: Transport, ⁵⁶Ni decay, shock heating.
 - Photosphere doesn't expand with ejecta. Is a photosphere even well-defined?

Analytic Estimates

Deviations from adiabatic assumption (Energy not dominated by thermal energy):

- Energy sources: ⁵⁶Ni decay, Shock Heating
- Cooling (diffusion timescale important)
- Arnett et al. (1980,1982) produced semi-analytic solutions incorporating 56Ni decay and cooling.
- For a simple sphere, shock heating can be estimated by:

 $aT^4Vol. = K.E. \to T = (3E_{explosion}/(4\pi r^3 a))^{1/4}$

Including these effects already pushes toward semi-analytic solutions and most still make simplifying assumptions on the opacities. In the 80s, we started using simulations to estimate light curves.

Applying Early Light-Curve Models

Litvinova and Nadezhin (1985) derived relations for ejecta mass (m), radius (r) and explosion energy (E) as a function of V magnitude, time since explosion (t) and photospheric velocity (v) based on their simulations:

 $\log(E(foe)) = 0.135 V + 2.34 lg(t) + 3.13 lg(v) - 4.205$

- $\log(M(solar)) = 0.234 V + 2.91 \log(t) + 1.96 \log(v) 1.829$
- •Lg(R(solar)) = -0.572V 1.07lg(t) 2.74lg(v) 3.350

SN	<i>t</i> ₀ (JD–2,400,000)	<i>t_p</i> (JD-2,400,000)	V_p	v_p (±300 km s ⁻¹)	Energy (×10 ⁵¹ ergs)	Ejected Mass (M_{\odot})	Initial Radius (R_{\odot})
1969L 1973R 1986L 1988A 1989L 1990E 1991G 1992H 1992am 1992ba 1992ba 1999cr	$\begin{array}{c} 40550.5(5)\\ 42008.5(15)\\ 46707.9(4)\\ 47163.0(7)\\ 47650.0(15)\\ 47932.6(5)\\ 48280.0(5)\\ 48661.0(10)\\ 48778.1(11)\\ 48883.2(5)\\ 51221.5(10)\\ 51474.0(3)\end{array}$	40660.0(7) 42119.0(7) 46813.0(7) 47305.0(35) 47790.7(7) 48063.9(10) 48403.0(7) 48777.5(10) 48951.1(29) 49015.3(7) 51347.5(10) 51598.0(5)	$\begin{array}{c} 13.34(06)\\ 14.61(05)\\ 14.64(05)\\ 15.04(05)\\ 15.68(05)\\ 16.00(20)\\ 15.61(07)\\ 15.61(07)\\ 15.07(04)\\ 18.78(05)\\ 15.56(05)\\ 18.50(05)\\ 14.02(05)\end{array}$	4562 4823 4037 3537 2800 4552 3030 5084 5097 2954 3858 3290	$\begin{array}{c} 2.3 \substack{+0.7 \\ -0.6 \\ 2.7 \substack{+1.2 \\ -0.9 \\ 1.3 \substack{+0.5 \\ -0.3 \\ 2.2 \substack{+1.7 \\ -1.2 \\ 1.2 \substack{+0.6 \\ -0.5 \\ 3.4 \substack{+1.3 \\ -1.0 \\ 1.3 \substack{+0.9 \\ -0.6 \\ 3.1 \substack{+1.3 \\ -1.0 \\ 5.5 \substack{+3.0 \\ -2.1 \\ 1.3 \substack{+0.4 \\ -0.6 \\ 1.2 \substack{+0.6 \\ -0.3 \\ -0.3 \\ -0.6 \\ 1.2 \substack{+0.6 \\ -0.3 \\ -0.6 \\ -0.3 \end{array}}$	$\begin{array}{c} 28^{+11}_{-8}\\ 31^{+16}_{-12}\\ 17^{+7}_{-5}\\ 50^{+46}_{-30}\\ 41^{+22}_{-15}\\ 48^{+22}_{-15}\\ 48^{+22}_{-15}\\ 41^{+19}_{-16}\\ 32^{+16}_{-11}\\ 56^{+40}_{-24}\\ 42^{+17}_{-13}\\ 32^{+14}_{-12}\\ 27^{+14}_{-8}\\ \end{array}$	$\begin{array}{c} 204^{+150}_{-88} \\ 197^{+128}_{-78} \\ 417^{+304}_{-193} \\ 138^{+80}_{-42} \\ 136^{+118}_{-65} \\ 162^{+148}_{-78} \\ 70^{+73}_{-73} \\ 261^{+177}_{-103} \\ 586^{+341}_{-212} \\ 96^{+100}_{-45} \\ 224^{+36}_{-81} \\ 249^{+243}_{-150} \end{array}$
1999em 1999gi	51474.0(3)	51645.0(5)	14.02(05) 14.98(05)	3290	$1.2_{-0.3}$ $1.5_{-0.5}^{+0.7}$	43^{+24}_{-14}	$\begin{array}{r} 249_{-150}^{+110} \\ 81_{-51}^{+110} \end{array}$

 TABLE 3
 Observed and Physical Parameters for Type II Supernovae

Hamuy (2003) fits with this formulae predict extremely high masses (too high to be believed).

Breakout Analytics

• Shock Breakout also has the potential to probe the star:

$$t_{diff} = (\delta r/\lambda)^2 \lambda/c \text{ where } \lambda = (\kappa \rho)^{-1}$$

 $v_{diff} = \delta r/t_{diff} = c/(\delta r \kappa \rho)$

- When v_{shock} < v_{diff}, shock breakout occurs. With the shock velocity and time of shock breakout, we can measure the stellar radius and density.
- This is an order of magnitude estimate. Worse yet, there is not a single photosphere for all wavelengths.

Difficulties in Modeling Supernovae

- Initial Conditions
- Progenitor structure, circumstellar medium (progenitor mass ejections), explosion energy, explosion asymmetry
- Radiation Transport
- Simplifications in solving the Boltzmann Equation
- Opacities: number of levels, LTE vs. NLTE, steady state approximations
- Ion/electron coupling
- Radiation Hydrodynamics
- > 1T, 2T, 3T (radiation/matter decupling)
- Hydrodynamic shocks and radiation
- Radiation effects on hydrodynamics

Shell Burning

 Shell burning can be explosive (Smith & Arnett 2013, Arnett et al. 2014, Herwig et al. 2014). This will alter the core masses as well as the circumstellar medium.

Stellar Models Key

 New mixing algorithms may burn helium (through more dynamic shell burning), increasing the Ic/Ib ratio (Frey et al. 2013)

Binaries and mass loss

- Binary searches in clusters suggest that >50% of massive stars are in close binaries (Kobulnicky et al. 2012, Sana et al. 2012).
- Mass transfer, Common envelope will affect circumstellar media and, in some cases, stellar structure.
- The strength and asymmetries in wind mass loss has also changed over the last decade.
- All these, mixing, winds, binary effects, can dramatically alter the light curves and we have a lot of work to understand these effects.

Streaming and Removal Term

Radiation Transport

Scattering Term

Source Term

- •Average over angle:
 - ➢First moment: diffusion
 - Second moment: Variable Eddington Factor
- •Average over Energy Group: Gray (Rosseland, Planck)
- •Remove time dependent term
- Ignore Spatial Terms

Accurate Opacities critical: the kilanova example

• The presence of heavy elements at such cold temperatures requires the calculation of near-neutral ions with many (> 50) bound electrons.

• Furthermore, the presence of the 4f⁴ subshell (lanthanides) requires the seniority quantum number to properly account for the angular momentum coupling when calculating the fine-structure levels (extra code development was required to obtain atomic structure)

• Just 25 configurations leads to 27,000 levels and 300,000,000 lines.

	Our sample ions/atoms inhabiting each cell								
level l		<u>ion i</u>	<u>ion (i+1)</u>	<u>ion (i+2)</u>					
∞	T								
	Ē								
	N E								
3	R								
2	G								
1	Y								
(e.g.	I	neutral	singly	doubly					
		i=1	i=2	i=3)					

Physics of Shock Breakout: Understanding the Photosphere

Breakout timing is wavelength dependent, averaging over angle will cause errors.

Radiation Hydrodynamics in Shock Breakout

• Even when the radiation is trapped, it can lead the shock the shock position moves faster than Sedov solution would predict. • After breakout, the radiation begins to decouple from the material.

Hydrodynamic Shocks can Drive Emission: For massive star progenitors, the circumstellar medium is king!

We can still infer extreme conditions, but details more difficult. For example, Ofek's basic conclusions for SN2010jl still hold: strong explosion, large circumstellar mass.

Electron/Ion Decoupling

As the density drops, the electrons are no longer coupled to the ions. e.g. in SN 2010jl, the X-ray stayed bright for over 2 years! With the expected densities (even the large shell), the electron "temperature" will be much lower than the ion temperature.

Testing our codes: Physics experiments of Shock Breakout

- The Univ. of Michigan CRASH center developed an experiment to test shock breakout.
- This experiment demonstrated many of the difficulties with modeling shock breakout: radiation pre-heat, turbulence,

Density in Crash experiment (Cassio Calculations): Fatenejad et al.

Opacity Experiments

- Early results showed good agreement with iron measurements, but the most recent iron experiments do not agree with state-ofthe-art atomic physics.
- Kurucz results have trouble getting agreement with the atomic physics community.

FIG. 1. The sample composition for (a) an Fe+Mg sample and (b) an Al+Fe+Mg sample and their synthetic transmission spectra under 10% gradient with the average T_e and n_e of 195 eV and 8×10^{22} cm⁻³. Layer numbers correspond to the subscript i in Eqs. (1) and (2).

Nagayama et al. 2012

Modeling Transients

- All current efforts modeling astrophysical transients make simplifying assumptions in the progenitors, transport, hydrodynamics coupling and/or opacities.
- With these uncertainties, it is often difficult to find a unique solution (progenitor mass, explosion energy) for a given observed transient.
- We are in a unique position to tie laboratory experiments to our astrophysics studies and both fields can learn from each other.