

Towards Supernova Explosion

Sean M. Couch Hubble Fellow, University of Chicago smc@flash.uchicago.edu

> GRBMAG14 Bormio, Italy, 23 January 2014

Neutrino Heating Mechanism

e.g, Colgate & White (1966), Bethe & Wilson (1985)

- Bulk of the core's original binding energy, >10⁵³ erg, will be radiated as neutrinos in 10s of sec. following collapse. <u>Mechanism must tap this</u> <u>energy.</u>
- Need only ~1% of this to drive robust explosion.
 Need high quantitative accuracy!
- Tough to achieve in 1D!

Why is it Hard?

- Magnetohydrodynamics
- General Relativity: extreme gravity
- Microphysics: nuclear EOS, neutrino cross sections/interactions
- Boltzmann transport: neutrinos
- Fundamentally 3D problem!
- Physics fully-coupled!

Thursday, January 23, 14

3

2D 'ab initio' Explosions

2D 'ab initio' Explosions

Multi-D Effects

- Lepton-driven PNS convection => enhances neutrino luminosities
- Entropy-driven gain layer convection => increases matter dwell times
- Standing Accretion Shock Instability => expands gain region

Era of 3D CCSN Simulations

SMC (2013b)

- Grand challenge for petascale computational astrophysics.
- Approximations must be made.
- 3D makes an <u>enormous</u> impact!
- But 3D is not the "silver bullet..."

Early 3D Work Fryer & Warren (2002,2004); Fryer 2004

- Smoothed-particle hydro, accurate EOS, approximate GR.
- Explosions found, likely due to use of grey FLD for neutrinos.
- Important differences from 2D!

Also, recent SNSPH work on young remnants (Ellinger et al. 2013)

Upflow

GRBMAG14, 23 January 2014

Thursday, January 23, 14

8

3D Parametric Sims

Princeton

Garching

3D Parametric Sims Princeton Garching

Dolence et al. (2013) (also Nordhaus et al. 2010)

Hanke et al. (2012)

About the same (?)

S.M. Couch

Easier in 3D

GRBMAG14, 23 January 2014

3D Parametric Sims SMC, 2013, ApJ, 775, 35

3D explosions later than 2D!

GRBMAG14, 23 January 2014

3D Parametric Sims SMC, 2013, ApJ, 775, 35

GRBMAG14, 23 January 2014

Results with *v*-Lightbulb SMC 2013, ApJ, 775, 35

- Nordhaus et al. (2010) and Dolence et al. (2013) find easier explosion in 3D vs. 2D.
- Result not confirmed by Hanke et al. (2012) who find strong resolutiondependence.
- I find explosion is *harder* in 3D compared with 2D.

Neutrino Leakage SMC & E. O'Connor, arXiv:1310.5728, SMC & C. Ott, ApJL, 778, L7

- <u>Not</u> transport, but approximates the results of transport *much* better than lightbulb.
- Cooling, number emission/absorption due to electron neutrinos /antineutrinos, and heavy-lepton neutrinos.

 Heating due to electron neutrino/ antineutrinos.

3D FLASH Leakage Sims SMC & E. O'Connor, arXiv:1310.5728, SMC & C. Ott, ApJL, 778, L7

- 3D Cartesian with AMR in FLASH.
- 0.49 km resolution up to r ~ 100 km.
- Beyond 100 km, "angular" resolution of 0.43 degrees.
- 37x75x1000, θ-φ-r resolution for leakage rays.
- Multipole gravity of SMC, Graziani, & Flocke (2013, ApJ, 778, 181).
- Lattimer & Swesty EOS (K=220 MeV).

Multi-D Results for s27

$$Q_{\nu_i} = f_{\text{heat}} \frac{L_{\nu_i}(r)}{4\pi r^2} \left\langle \frac{1}{F_{\nu_i}} \right\rangle \sigma_{\nu_i} \frac{\rho X_{(n/p)}}{m_{\text{amu}}} e^{-2\tau_{\nu_i}}$$

- 2D explodes for lower heat factor, and more vigorously for same heat factor, than 3D.
- Compare to Hanke et al. (2013).

Much greater shock asymmetry in 2D.

 \bigcirc

•

entropy (k_B baryon⁻¹)

s27

s27

2D v. 3D

pectra

GRBMAG14, 23 January 2014

pectra

Early gainregion turb. E

Much more E in 2D at large scales!

Inverse cascade causes crucial differences.

GRBMAG14, 23 January 2014

2D v. 3D

- 2D explodes more easily and vigorously than 3D (see also Couch 2013, Hanke et al. 2013, Takiwaki et al. 2013).
- 2D symmetry axis encourages artificial growth of both SASI and convection.
- Inverse cascade pumps turbulent energy to large scales in 2D.
- 2D buoyant plumes remain larger (ring-like).

3D with Full Nu Transport Hanke et al. (2013, ApJ, 770, 66)

3D does not blow up but 2D does!!

But...Low-resolution could impact results.

S.M. Couch

GRBMAG14, 23 January 2014

Thursday, January 23, 14

21

3D with Full Nu Transport Lentz et al. (in prep.)

Results from Oak Ridge Group

3D hasn't exploded...yet.

S.M. Couch

GRBMAG14, 23 January 2014

Neutrinos in Trouble?

- Lack of 3D explosions is telling us we are missing physics, or getting the physics wrong...
- Possibilities:
 - Progenitor structure
 - MHD/rotation (e.g., Dessart et al. 2008)
 - Neutrino effects (i.e., flavor swap, x-sections)
 - Equation of state
- But... neutrino effects may not be likely...

Massive Stellar Evolution: A Solved Problem

GRBMAG14, 23 January 2014

 \mathbf{C}

Thursday, January 23, 14

O/Ne/Mg

Si

Fe

24

He

Н

Massive Stellar Evolution: A Solved Problem

O/Ne/Mg -

Si

Fe----

GRBMAG14, 23 January 2014

Thursday, January 23, 14

24

He

Н

Real Stars Are Not Spherical

- Essentially spherical IC's assumed in sims.
- Late convective burning is violent and strong.
- Large perturbations exist upon collapse.
- What effect will this have on the mechanism?

S.M. Couch

Progenitor Asphericity SMC & C. Ott (2013, ApJL, 778, L7)

- Perturb tangential velocities in Si/O shell.
- Simple convolution of sinusoids.
- Peak amplitudes chosen from Arnett & Meakin (2011).
- Added $E_k < 10^{-4}$ of $E_i!$

S.M. Couch

entropy (k_B baryon⁻¹)

s15

Unperturbed

AAS223, 7 January 2014

28

AAS223, 7 January 2014

Grid-scale perturbations

AAS223, 7 January 2014

Progenitor Structure Matters

- Progenitor asphericity *qualitatively* alters post-bounce evolution. Can trigger explosions from duds!
 - We need realistic 3D progenitors.
- The CCSN mechanism is essentially an initial value problem!
- In fact, the 1D models we use employ MLT for convection, telling us there are regions of significant asphericity.
 - Thus, using 1D models without perturbations is not truly self-consistent.

S.M. Couch

AAS223, 7 January 2014

Magnetorotational Effects

- All stars rotate and have B-fields. How much?
- During & after collapse, MRI will tap rotation E to amplify B & drive turbulence (Akiyama et al. 2003). But how much?
- Saturation field strength could be as high as 10¹⁶ G!
- But... magnetic breaking in stars could slow core rotation (Heger, Woosley & Spruit 2005).
- Could matter for 10⁻⁴ of CCSNe, but what about typical CCSNe?

AAS223, 7 January 2014

Magnetorotational Explosions Burrows, Dessart, et al. (2007)

Jets in 3D?

Moesta, Ott, et al. (in prep.) (See also Porth, Komissarov, & Keppens 2013)

GRMHD, neutrino leakage, realistic EOS, large B, small P

AAS223, 7 January 2014

At the Edge of Explosion...

- 2D is a poor approximation of 3D; Can't trust quantitative results of 2D!
- Current generation of 3D sims with moderate and high fidelity neutrino treatment fail to explode (without extra heating).
- Progenitor asphericity can trigger explosion in marginal cases; multi-D progenitor structure is crucial!
- MHD effects could matter in typical CCSNe, as well as LGRB progenitors.

