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   Origin of     in magnetarsB

when generated?
- fossil (inherited from MS)
- created during progenitor evolution
- created in core collapse

processes:
- ‘flux freezing’ during * evolution
- ‘winding-up’
- convection (dynamo)
- MRI (dynamo)

evolution to a stable ‘endproduct’ 
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What field strength to explain?

pulsar fields .... magnetar fields: same process?

If continuous, need a mechanism that
explains a range of 5 decades in B
(e.g. equal numbers per decade, or lognormal)

- suggests mechanism includes exponential sensitivity
  of outcome on the controlling parameter 
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when generated?
- fossil (inherited from MS)
- created during progenitor evolution
- created in core collapse

processes:
- ‘flux freezing’
- ‘winding-up’
- convection (dynamo)
- MRI (dynamo)
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flux freezing:
magnetic flux inherited from MS progenitor

Magnetic flux in a magnetar: 

            core of O star: 

Statistics: 10% of N* forming O** must have such field

Requires that field remains frozen during entire pre-SN 
evolution. Problem: convective phases causing effective diffusion of the 
field.

1.4M!

R = 1011 cm → BO = Φ/πR2 = 105 G

Bm = 1015, R = 106 → Φ = 31027 Mx
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field inherited from pre-collapse core, + flux freezing

collapse from 3000 km to 15 km:
final field of             requires 
(dipole component of) initial field

no plausible process known ....

1010 − 1011 G
1015 G
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processes during core collapse

- neutrino-driven convection

- magnetorotational dynamo from 
  differential rotation
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Field produced by convective dynamo in proto-NS

- Equipartition of energies ➞ intrinsic field strength 
- Rossby number ➞ filling factor

                                   (small for fast rotation)

Sun:                             G                           cm/s,                          s

SN:  

observed dipole field Sun:
                                                    

Beq = (4πρ)1/2vconv

Be! ≈ 3 103 vc ≈ 4 103

Be ≈ 1.5 1015 vc ≈ 4 108

Ro! ≈ 3

Bdip ≈ 20G = 10−2Be"

≈ 1013Gscaled to core collapse:  

Ro = 1/Ωτconv

Duncan & Thompson

τconv ≈ 106

Ro ≈ 1.5P−3

Thursday, January 23, 2014



Dynamo by differential rotation

1.  exponential growth (faster than winding up)
2.  does not need convection, but needs a magnetic instability:
   - magneto-rotational instability (MRI) 
   - magnetic buoyancy (‘Parker instability)
   - Tayler instability

MRI:   Akiyama+ 2003

MRI operating on              :
Ardelyan, Moiseenko & Bisnovatyi-Kogan 05, 06

ν-cooling ➔ convection disappears, increasingly stable stratification, ➔
strength required for the field to appear at the surface increases 
(magnetic buoyancy).
 

∂Ω/∂θ
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(numerical) evidence for MRI dynamo action in core collapse

Ardelyan, Moiseenko & Bisnovatyi-Kogan MNRAS 2006 

Akiyama et al. 2003

MRI simulation finds

B2
0 →

t0 ≈ 0.05

B = B0 exp(t/t0),
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MRI: 

numbers that work, 
assuming :                       ,
initial field                      ,
duration                  :       

exponential sensitivity to rotation rate

B ∼ exp(∆Ωt)

∆Ω/Ω ∼ 0.3

P = 10ms

B0 = 105 G

P = 20ms1010 G

1016 G

t = 1 s
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- field-amplification processes don’t produce dipole fields
- fields produced evolve on Alfvén time scale

➔ stable dipole involves more than an amplification process

- relaxation to a magnetic equilibrium
- magnetar:              ➔ Alfvén crossing time
- pulsar              ➔
- compare: crust formed @               
  field freezes into crust 

1015 G τA = 0.1 s
1012 G τA = 100 s

≈ 100 s
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Field amplification: how to make a strong, stable dipole moment

Winding-up: 
1. does not change dipole moment
2. takes time ...

Dipole produced by (off-centered) rise of toroidal loop 

- Limited by stable stratification, once neutrinos escaped 
- dipole produced is unstable (Flowers-Ruderman)
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Magnetic stars: instability of a poloidal field

!g

Flowers and Ruderman 1977

Thursday, January 23, 2014



Numerical simulation of Flowers-Ruderman instability of a dipole field     

(Braithwaite and 
HS A&A 2005)

End result:

B ↓ 0
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figures from Braithwaite 2008

‘random’ initial field
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Axisymmetric and
non-axisymmetric

equilibria

Simulations of magnetic 
relaxation to equilibrium

Braithwaite 2008
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poloidal field bundle stabilized by twisted torus

configuration has nonzero magnetic helicity
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Helicity: 
- global, topological quantity 
- twist + ‘knottedness’
- no local ‘helicity density’
- conserved in perfect conductivity
  (reconnection changes H)

 ‘somewhat conserved’ at finite conductivity
 (‘Taylor relaxation’) 

- (to the extent that) H conserved: final state
  is a stable field configuration
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H=0 H≠0

H =

∫

V
B ·A dV (B = ∇×A)

t > tAStability (            ) requires: 

- 1. Stable stratification

- 2. Helicity

Helical field configurations are not stable in themselves. 
They don’t even exist in the absence of constraining forces.
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reconnection

➞

➞
unfolding

Helicity can decrease , but also created by reconnection

H=0

H≠0

H≠0
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Summary
- fossil fields?
- convective dynamos: not likely
- exponential amplification during core collapse
- range of field strength: 
  exponential sensitivity to a control parameter
- decay of amplified field by Alfvenic relaxation 

- importance of magnetic helicity
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Simulations
(Braithwaite 2008)

Non-axisymmetric 
equilibria
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τ Sco
(Donati et al. 2006)‏

Simulations
(Braithwaite 2008)

Non-axisymmetric 
equilibria
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