Origin of B in magnetars

Origin of B in magnetars

when generated?

- fossil (inherited from MS)
- created during progenitor evolution
- created in core collapse

processes:

- 'flux freezing' during * evolution
- 'winding-up'
- convection (dynamo)
- MRI (dynamo)

evolution to a stable 'endproduct'

What field strength to explain?

pulsar fields magnetar fields: same process?

If continuous, need a mechanism that explains a range of 5 decades in *B* (e.g. equal numbers per decade, or lognormal)

- suggests mechanism includes exponential sensitivity of outcome on the controlling parameter

when generated?

- fossil (inherited from MS)
- created during progenitor evolution
- created in core collapse

processes:

- 'flux freezing'
- 'winding-up'
- convection (dynamo)
- MRI (dynamo)

flux freezing: magnetic flux inherited from MS progenitor

Magnetic flux in a magnetar:

$$B_{\rm m} = 10^{15}, \ R = 10^6 \ \to \Phi = 3 \, 10^{27} \, {\rm Mx}$$

 $1.4 M_{\odot}$ core of O star:

$$R = 10^{11} \,\mathrm{cm} \to B_O = \Phi/\pi R^2 = 10^5 \,\mathrm{G}$$

Statistics: 10% of N* forming O** must have such field

Requires that field remains frozen during entire pre-SN evolution. Problem: convective phases causing effective diffusion of the field.

field inherited from pre-collapse core, + flux freezing

collapse from 3000 km to 15 km: final field of 10^{15} G requires (dipole component of) initial field $10^{10} - 10^{11}$ G

no plausible process known

processes during core collapse

- neutrino-driven convection
- magnetorotational dynamo from differential rotation

Field produced by convective dynamo in proto-NS

- Equipartition of energies \rightarrow intrinsic field strength
- Rossby number \rightarrow filling factor

 $B_{\rm eq} = (4\pi\rho)^{1/2} v_{\rm conv}$

 ${
m Ro}=1/\Omega au_{
m conv}$ (small for fast rotation)

- Sun: $B_{\rm e\odot} pprox 3\,10^3\,$ G $\,v_{
 m c} pprox 4\,10^3\,$ cm/s, $\, au_{
 m conv} pprox 10^6\,$ s ${
 m Ro}_\odot pprox 3\,$
- SN: $B_{\rm e} \approx 1.5 \, 10^{15}$ $v_{\rm c} \approx 4 \, 10^8$ Duncan & Thompson Ro $\approx 1.5 P_{-3}$

observed dipole field Sun: $B_{
m dip} pprox 20\,{
m G} = 10^{-2}B_{
m e\odot}$

scaled to core collapse: $pprox 10^{13} {
m G}$

Dynamo by differential rotation

- I. exponential growth (faster than winding up)
- 2. does not need convection, but needs a magnetic instability:
 - magneto-rotational instability (MRI)
 - magnetic buoyancy ('Parker instability)
 - Tayler instability

MRI: Akiyama+ 2003

MRI operating on $\partial \Omega / \partial \theta$: Ardelyan, Moiseenko & Bisnovatyi-Kogan 05, 06

V-cooling \rightarrow convection disappears, increasingly stable stratification, \rightarrow strength required for the field to appear at the surface increases (magnetic buoyancy).

(numerical) evidence for MRI dynamo action in core collapse

Akiyama et al. 2003

MRI simulation finds

 $B = B_0 \exp(t/t_0),$ $t_0 \approx 0.05$

Ardelyan, Moiseenko & Bisnovatyi-Kogan MNRAS 2006

exponential sensitivity to rotation rate

MRI: $B \sim \exp(\Delta \Omega t)$

numbers that work, assuming : $\Delta\Omega/\Omega\sim 0.3$, initial field $B_0=10^5\,{
m G}$, duration $t=1\,{
m s}$:

 $10^{16} \,\mathrm{G} \qquad P = 10 \,\mathrm{ms}$ $10^{10} \,\mathrm{G} \qquad P = 20 \,\mathrm{ms}$

- field-amplification processes don't produce dipole fields
- fields produced evolve on Alfvén time scale
- \rightarrow stable dipole involves more than an amplification process
- relaxation to a magnetic equilibrium
- magnetar: $10^{15} \text{ G} \rightarrow \text{Alfvén crossing time } \tau_{\text{A}} = 0.1 \text{ s}$
- pulsar $10^{12} \text{ G} \rightarrow \tau_{\text{A}} = 100 \text{ s}$
- compare: crust formed @ $\,\approx\,100\,{\rm s}$ field freezes into crust

Field amplification: how to make a strong, stable dipole moment

Winding-up:

- 1. does not change dipole moment
- 2. takes time ...

Dipole produced by (off-centered) rise of toroidal loop

- Limited by stable stratification, once neutrinos escaped
- dipole produced is unstable (Flowers-Ruderman)

Magnetic stars: instability of a poloidal field

Flowers and Ruderman 1977

Numerical simulation of Flowers-Ruderman instability of a dipole field

End result: $B\downarrow 0$

(Braithwaite and HS A&A 2005)

Simulations of magnetic relaxation to equilibrium

Braithwaite 2008

Axisymmetric and non-axisymmetric equilibria

poloidal field bundle stabilized by twisted torus

configuration has nonzero magnetic helicity

Helicity:

- global, topological quantity
- twist + 'knottedness'
- no local 'helicity density'
- conserved in perfect conductivity (reconnection changes H)

'somewhat conserved' at finite conductivity ('Taylor relaxation')

- (to the extent that) H conserved: final state is a stable field configuration

Stability ($t > t_A$) requires:

- 1. Stable stratification

- 2. Helicity
$$H = \int_V \mathbf{B} \cdot \mathbf{A} \, \mathrm{d}V \qquad (\mathbf{B} = \nabla \times \mathbf{A})$$

Helical field configurations are not stable in themselves. They don't even exist in the absence of constraining forces.

Helicity can decrease, but also created by reconnection

Summary

- fossil fields?
- convective dynamos: not likely
- exponential amplification during core collapse
- range of field strength:
 - exponential sensitivity to a control parameter
- decay of amplified field by Alfvenic relaxation
- importance of magnetic helicity

