DIFFERENCES AMONG SN-GRBS, SN IC-BL AND SN IC

Modjaz+09 (Credit: D. Perley, J. Bloom, M. Modjaz, Gemini/NOAO)

Maryam Modjaz (New York University)

FELLOW STELLAR DEATH DETECTIVES

Harvard-CfA: Bob Kirshner

- H. Marion, M. Hicken, S. Blondin, P. Challis, M. Wood-Vasey, A. Friedman
- K. Z. Stanek (Ohio State), J. L. Prieto (Carnegie-Princeton), T. Matheson (NOAO), L. Kewley (Hawaii), P. Garnavich (Notre Dame), J. Greene (Princeton)
- <u>UC Berkeley:</u> Alex Filippenko, Josh Bloom, N. Butler, R. Chornock, R. Foley, A. West, D. Kocevski, W. Li, A. Miller, M. Ganeshalingam, D. Perley, D. Poznanski, J. Silvermann, N. Smith, D. Starr, P. Kelly
- **<u>PTF</u>**: Avishay Gal-Yam, Iair Arcavi, +PTF team
- <u>NYU</u>:

Yuqian Liu

 Or

Graur

SN ZOO

• Spectra: Type I (without H) and Type II (with H)

+Hydrogen-rich SNe (SN IIL, IIn, IIb)

+ Exploding Zoo: Superluminous SNe (SLSN)

> **Broad** lines:large expansion velocities (~30,000 kms⁻¹)

large $E_{kinetic}(10^{52} \text{ erg})$

See S. Smartt's & L. Dessart's talks

Maryam Modjaz

SN ZOO

• Spectra: Type I (without H) and Type II (with H)

SN-GRB CONNECTION

1998-2013: ~dozen of solid SN-GRBs with Spectroscopic IDs: broad-lined SN Ic (0.0085 < z < 0.6)

Stanek et al. (2003), Matheson et al. (2003), see also Hjorth et al. (2003)

see Reviews: Woosley & Bloom (2006), Hjoerth & Bloom (2011), Modjaz (2011)

SN-GRB CONNECTION

1998-2013: ~dozen of solid SN-GRBs with Spectroscopic IDs: broad-lined SN Ic (0.0085 < z < 0.6)

Modjaz et al. (2006)

SN-GRB CONNECTION

Maryam

1998-2013: ~dozen of solid SN-GRBs with Spectroscopic IDs: broad-lined SN Ic (0.0085 < z < 0.6)

- Most recent SN-GRBs: Similar SN Ic-bl for huge range of GRB luminosities (5 orders)

• Many (~45/60) broad-lined SN Ic have NO observed GRB

• Probably not off-axis GRBs (e.g., Soderberg et al. 2006)

-> Successful GRBs need special conditions

GRB*		SN		Redshift	
1) 980425		1998bw		0.0085	
2) 030329		2003dh		0.1685	
3) 031203	3	2003	Blw	0.100	6
4) 050525A		2005nc		0.606	
5) 060218		2006	Saj	0.033	5
6) 081007	7	2008	Bhw	0.529	5
7) 091127	7	2009	nz	0.490	
8) 100316	6D	2010)bh	0.059	3
9) 101219	ЭВ	2010)ma	0.55	
10) 120422A		2012	2bz	0.283	
11) 13042	27A	2013	Bcq	0.339	9
	GRB		SN	Reds	shift
	111211A		?	0.478	3
Modjaz	120714B		2012eb	0.398	3
	130702A		2013dx	0.145	5

UNDERSTANDING SNE IC WITH AND WITHOUT GRBS

- Focus on Stripped SNe with and without GRBs to elucidate conditions and progenitors of different types of explosions
- 2-thronged approach:
 - 1) Explosion properties: spectra & light curves
 - 2) <u>Host galaxies:</u> metallicities at SN & GRB sites & SF conditions

"Large" data-sets: robust statistical analysis constraints on SN-GRB central engine & progenitors

UNDERSTANDING SNE IC WITH AND WITHOUT GRBS

- Focus on Stripped SNe with and without GRBs to elucidate conditions and progenitors of different types of explosions
- 2-thronged approach:
 - 1) Explosion properties: spectra & light curves
 - 2) <u>Host galaxies:</u> metallicities at SN & GRBs sites & SF conditions

CONCLUSIONS: <u>SN Ic-bl</u> (with and without GRBs) are different from <u>SN Ic</u> -> different progenitors

STELLAR FORENSICS: HUNT FOR PROGENITORS

Stripped SN & SN-GRB progenitors:

Single massive (> 30 M_☉) Wolf-Rayet stars with metallicity-dependent winds (or eruptions) (e.g., Woosley et al. 1995, Maeder & Conti 2004, but see Smith & Owocki) He stars (8-40 M_☉) in binaries, runaway binaries (e.g., Podsiadlowski +04) -> Binaries are common: ~70% interacting! (Sana, deMink et al. 2012)

See P. Podsiadlowski's talk

Importance of Stripped SN & GRB progenitors!

Maryam Modjaz

STELLAR FORENSICS: HUNT FOR PROGENITORS

Direct Study:

NO progenitor detections for ~10 SN Ib, Ic, Ic-bl (e.g. Smartt09) ->not conclusive (Bibby+12, Yoon+12)

-> Need for more indirect, statistical studies!

1) From Explosion Properties:

- Optical & NIR light curves & spectra (Drout+11, Cano+13, Bianco, Modjaz et al. in prep)
- (SN Shock breakout & Envelope-Cooling [e.g, Campana+06, Soderberg+08, Modjaz+09, Arcavi+11, etc]) -> R. Sari's talk

From Light curves (no spectra)

Drout+11 : 25 SN Ib, Ic, Ic-bl with Palomar 60

SN Type $M_{V_{\text{peak}}}$ $M_{R_{\text{peak}}}$ $M_$	
	Ni I⊙)
SNe Ib -17.6 ± 0.9 -17.9 ± 0.9 0.20 :	± 0.16
SNe Ic -18.0 ± 0.5 -18.3 ± 0.6 0.24 :	± 0.15
SNe Ic-BL -18.3 ± 0.8 -19.0 ± 1.1 0.58 :	± 0.55
Engine-driven SNe -18.9 ± 0.3 -18.9 ± 0.4 0.40 :	± 0.18

(i) Median ejecta masses:

(a) Ib: $M_{ej} \sim 3.9 \,\mathrm{M_{\odot}}$ (b) Ic: $M_{ej} \sim 3.4 \,\mathrm{M_{\odot}}$ (c) Ic-BL: $M_{ej} \sim 3.9 \,\mathrm{M_{\odot}}$ (d) GRB/XRF: $M_{ej} \sim 6.0 \,\mathrm{M_{\odot}}$.

(ii) Median nickel masses:

(a) Ib and Ic: $M_{\rm Ni} \sim 0.15-0.18 \,{\rm M_{\odot}}$ (b) Ic-BL: $M_{\rm Ni} \sim 0.25 \,{\rm M_{\odot}}$ (c) GRB/XRF: $M_{\rm Ni} \sim 0.3-0.35 \,{\rm M_{\odot}}$. Cano+13: literature data (20 GRB/XRFs, 19 Ib, 13 Ic, 9 SN Ic-bl)

Maryam Modjaz

SN Ic-bl & GRBs: larger peak mag (i.e., ⁵⁶Ni mass) than SN Ic by factors of 2-3

CfA Stipped SN Sample: Extensive LC & Spectra

STELLAR FORENSICS: FROM EXPLOSIONS

<u>CfA Stripped SN sample of</u> <u>spectra & light curves:</u>

--> Ejecta masses for SN Ib and SN Ic a) the same

From literature SN-GRB & GRBs: higher (~2x) average M_{ej} (Cano+13) b) low ("~2" M_{sun})!

-> binaries!?

Bianco, Modjaz et al, in prep

MODJAZ ET AL. 2014: EXTENSIVE SPECTROSCOPIC DATA

- SN relatively nearby (<cz>~ 4100 km/s)
- 43 of 73 SNe have measured date of max

MEAN SPECTRA: TYPICAL SN

SNIDified (S. Blondin & Tonry 2007): continuum removed std dev max dev

Line widths: - SN Ic @ +0d: ~7000-15,000 km/s

- SN94I is <u>NOT</u> a typical SN Ic

SN IC-BL ARE NOT HIDING HELIUM

SN Ic convolved with ~15,000 km/s Gaussian + blueshifted by 3000 km/s =~ SN Ic-bl

-> SN Ic-bl spectra: most likely no smeared-out Helium ! Relative flux + constant

Maryam Modjaz

SN IC-BL WITH AND WITHOUT GRBS

SN Ic-bl <u>with</u> GRBs: broader spectra than SN Ic-bl without observed GRBs

Reasons:

- choked, lower energy jet in SN Ic-bl?
- viewing angle effect?
- Implications for "donut magnetars"

Maryam Modjaz

SN IC-BL WITH AND WITHOUT GRBS

Modjaz et al. (in prep)

Schulze+14 (astro-ph)

"VELOCITY" DEPENDS ON METHOD

Compare

Choose the same method when comparing velocities of SNe !

STELLAR FORENSICS: ENVIRONMENTAL CLUES

Direct Study:

NO progenitor detections for ~10 SN Ib, Ic, Ic-bl (e.g. Smartt09) ->not conclusive (Bibby+12, Yoon+12)

Statistical Study:

Differentiate between GRB, and Stripped SN progenitor models via observations of environments & host galaxies

3 Methods:

- Proximity to HII regions & Brightest Blue regions
- Measured metallicity
- Host galaxy SF conditions

STAR'S MASS & METALLICITY IS

- Massive stars at different Z: different amount of – mass loss
 - core angular momentum (e.g. for both GRB collapsar and magnetar model [Woosley (1993), MacFadyen & Woosley (1999), Yoon & Langer (2005)])

See S.-C. Yoon's talk

Maryam Modjaz

STAR'S MASS & METALLICITY IS IMPORTANT

DEFINITION OF "METALLICITY"

- Metallicity = Oxygen abundance in HII regions from emission lines [12+log₁₀(O/H)]
- Why Oxygen?
 - Most abundant metal in the universe
 - Weakly depleted onto grains
 - Dominant coolant (besides H): strong nebular lines in optical
- Need to be very careful
 - Systematic differences offsets b/w diagnostics (e,g. Kewley & Dopita (2002), Pettini & Pagel (2004), Tremonti et al. 2006
 - Spectra at position of SN or GRB of HII regions to get ~natal Z

METALLICITIES AT THE SITES OF SN IC-BL WITH AND WITHOUT GRBS

Updated Modjaz et al (2008): For 10bh/100316D: Chornock +11, Starling+ 11, Levesque+11; for 98bw's PP04: Christensen+08, 12bz: Levesque+12, 13cq: Xu+13, 13dx: Kelly+13 SN2009bb: Levesque+10

METALLICITY: CAUSATION OR CORRELATION?

<u>Reason(s):</u>

- Low Z GRB progenitor? (Yoon & Langer 05, Woosley & Heger 06)

- **Dust?** (Fynbo +10, Perley+10, ..)

- Star formation effect? (Mannucci +10, Koveski & West 11,)

Kocevski & West (2011): SFR weighting not enough to explain GRB host M-Z's offset to low Z (see also Kocevski, West & Modjaz 2009)

METALLICITY: CAUSATION OR CORRELATION?

Graham & Fruchter 13

Xu+13 (for 13cq/GRB130427A)

Maryam Modjaz

METALLICITY: CAUSATION OR CORRELATION?

Word of caution for high-redshift GRB host studies:

Host of SN13dx/GRB130704A

-> Are the observed highmetallicity "hosts" @higher redshifts really the GRB hosts?

Kelly+13

Maryam Modjaz

OXYGEN ABUNDANCE @ SN SITES

Metaanalysis:

(=Modjaz

+ 08 & 11

Anderson

Leloudas

+11 @SN

position

+10 &

&z

 $Z_{Ic-bl&GRB} < Z_{Ic-bl} < Z_{Ib} < Z_{Ic}$

Consistent with Arcavi+10, Kelly & Kirshner 12, Kuncaravakti +13, Sanders +12

For 10bh/ 100316D:, Levesque+11; for 98bw's PP04: Christensen+08, 12bz: Levesque +12, 13cq: Xu+13, 13dx: Kelly+13 (upper limit)

more metal-rich

EXPLOSION RATES

- All SN :
- ~1 SN / (100 years) / (MW-galaxy)
- SN lb/c:

SN Fractions (Volumetric, from LOSS) in high luminosity, high-Z galaxies (Li et al 2011, Smith et al. 2011)

• SN Ic-bl:

~10% of all SN lb/c in MW-type galaxies (Guetta & Della Valle 07, Arcavi+11)

but much more common in dwarf (low-L, low-Z) galaxies (up to 50%, Arcavi+11)

• GRB rate: different for low-L and high-L GRBs (Guetta & Della Valle 07)

Kelly, Filippenko, Modjaz, & Kocevski 2014 astro-ph/1401.0729

Sloan Digital Sky Survey (z < 0.2) 245 core-collapse SN discovered by galaxy-untargeted surveys, including 17 broad-lined SN Ic (without observed GRBs)

Hubble Space Telescope (z < 1.2)

15 optically luminous + obscured LGRBs

Fit galaxy light distributions

z < 0.2 SN Ic-BL and z <1.2 LGRB hosts

→ <u>high</u> stellar-mass densities Kelly, Filippenko, Modjaz, & Kocevski (2014, astro-ph)

No similar preference among SN II, SN Ib & SN Ic from <u>untargeted galaxies</u>

z < 0.2 SN Ic-BL and z <1.2 LGRB hosts → high star-formation densities

NOT due to high SFR, but small host size (for their stellar masses)

Cannot be explained by a preference for low Z – in addition to low-Z preference for GRBs

Overdense conditions create fast-ejecta progenitors more efficiently

- Cannot be explained by a preference for low Z so additional ingredient for GRBs, besides low Z
- Bound stellar clusters may form more efficiently at high SF densities (e.g., Goddard+ 10)
 - Tight massive binaries in clusters? (eg., Hut+92, v.d. Heuvel & Portegies 13)
 - (Top-heavy IMF? (.g., Kleesen, Spaans & Jappsen 07) but also bottom-heavy IMF (van Dokkum & Conry 10)?)

PALOMAR TRANSIENT FACTORY (PTF)

as of Dec 2012 (continues now as iPTF)

Home

Stripped SN host galaxy program: ~1/2 data taken

The Palomar Transient Fac	tory	
------------------------------	------	--

AAS January 2013		All SNA SNA IA SNA IA SNA II			
The PTF Team	Spectroscopically confirmed supernova	All SNe SNe Ia SNe Ibc SNe II 1923 1294 89 467			
Gallery	discoveries (as of today) Access public spectra (WISEASS)				
Public Papers / Docs	L				
Education and Public Outreach	PTF papers	57 <u>(list of papers)</u>			
Internal Project TWiki	Recent News				
Caltech Astronomy	February 2013: PTF discovers an outburst fro explosion (<u>Nature</u>)	om a massive star 40days before a supernova			

February 2013: The intermediate Palomar Transient Factory (iPTF) begins (Atel #4807)

The Palomar Transient Factory (PTF) is a fully-automated, wide-field survey

aimed at a systematic exploration of the optical transient sky.

PTF: Different Galaxies host different CC SNe

Future is now: ~3x more Stripped SN than early 2010

Leading large, unprecedented host galaxy study of 89 PTF Stripped SN from single & homogeneous, <u>galaxy-</u> <u>untargeted</u> survey

Metallicity gradients in PTF Hosts:

David Fierroz

KD02 9.0 09sk 10bzf 8.8 0eqi 2+log(O/H) 8.6 8.4 8.2 8.0 -0.50.0 1.0-1.00.5 Radius/petroRad

CONCLUSIONS: STELLAR FORENSICS WITH SN & GRBS

- No Progenitor detections for SN Ib, Ic, Ic-bl, SN-GRBs
 NEED for statistical studies of explosion properties & host environments
- Large samples over last ~15 years -> statistics!
- Trends in SN explosion properties & environments as a function of SN subtype: SN-GRB, SN Ic-bl (no GRB), SN Ic
- SN properties:
 - SN Ic-bl + GRBs : highest vels & broadest lines, highest ⁵⁶Ni masses
- Environmental Properties:
 - SN Ic-bl + GRBs @systematically lower oxygen abundances (but NOT exclusively)
 - SN Ic-bl with and without GRBs in dense SFR galaxies: from binaries?

SPECIFIC QUESTIONS & SPECULATIONS

- Why do SN-GRB look ~the same, when their GRBs have 5 orders of magnitude spread in Eγ ?
- Where are the off-axis GRBs ?
- Why do SN-GRBs show no Helium if SN-GRB progenitor models have ~1-2 Msun of He?
 - NIR spec of SN-GRBs: no He lines
 - SN Ic-bl: no smeared out He
 - Even "hidden" He can't be more than $\sim 0.2 \text{ M}_{sun}$?
- My Speculation (consistent with most observations):
 - SN Ic-bl with GRBs: high-mass stars in tight binaries @ low Z
 - SN Ic-bl without GRBs: high-mass stars in tight binaries @ lesslow Z
 - SN Ic: less-massive stars in less tight binaries @ high Z