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Swift observations opened a new window...
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PLATEAUS - long GRBs
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PLATEAUS - short GRBs
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FLARES - short GRBs
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GRB10Q117 Displayed by a
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FLARES: properties (long GRBs)

Flares widths vs
their peak time:
correlated

Log [#yk/s]



FLARES: properties (long GRBs), cont.
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FLARES: properties (long GRBSs), cont.

Average flare luminosity declines as L & T-26
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Theory:




Plateaus in long GRBs: Accretion Model

[Kumar, Narayan
& Johnson 2008]

poc 125

Different segments
of the light curve
reflect different
accretion zones in
the progenitor star

flux




Plateaus in long GRBs: Magnhetar Model

Case A: total pressure (log) Case A: velocity
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Plateaus powered by late-time rotational energy loss




Plateaus in short GRBs
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Magnetar formation via NS-NS mergers?
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Theory:




OBSERVATIONS PROVIDE CLUES....

[E.g. Kocevski et

al 2007; Chincarini
et al. 2007;
Bernardini et al.
2011]

Log [#yk/s]

Correlation between durations and times from trigger
could be reflecting collisions between shocks at increasingly
larger radii or an intrinsic property of the GRB engine.



Magnitudes of flare durations however rule out
late shells at least in a fraction of bursts
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-Similar conclusions reached by Chincarini et al. 2007: 10/69

of the flares analysed can only be explained by prolonged
activity of the central engine (for comoving isotropic emission)




IMPORTANT CAVEAT [Beloborodov et al. 2011]

Previous considerations based on the assumption
of intrinsic /sotropic emission.
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HOW TO PRODUCE A “LONG-LIVED,
“INTERMITTENT", GRB ENGINE?

+ Collapsar-type models




Collapsar-type models
+ Core fragmentation followed by accretion [King et al. 2005]

+ Propagation instabilities in jet within collapsing WR star
[Lazzati et al. 2011]

—_— Synthetic Lightcurve
| ® As the jet propagates inside the

collapsing star, the varying pressure
of both the jet and the star will cause

the jet opening angle to vary
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[Dai et al. 2006, also
Metzger et al. 2011;
Lyutikov and collab. ]

Merger-type models

Instabilities in msec pulsar formed after merger

+ Differentially rotating, msec pulsar formed after
the merger of the neutron stars

+ Differential rotation leads to windup of interior
poloidal magnetic field




Progenitor-independent models (disk/jet)

Flares observed in both long and short bursts, with similar
properties

What is in common between them?




Progenitor-independent models (disk/jet)

Magnetically driven models (disk)

[Proga & Zhang 2006]

Model driven by their numerical simulations

corona

funnel  outflow



Progenitor-independent models (disk/jet)

Magnetically driven models (jet) [siannios 2006]

This model does not require reviving the GRB engine

* Deceleration of the flow (and/or crossing of the reverse shock)
revives MHD instabilities that lead to dissipation of magnetic energy
through reconnection of magnetic field lines at different locations

in the flow;
* A large fraction of the reconnected energy can be radiated away

in the X-rays through synchrotron emission;
* Flare duration depends on the characteristic lengths of the recon-

hecting regions, as well as on how fast reconnection proceeds

Important model prediction: flare energy is a fraction
« (0, /t,)* of the prompt GRB emission —

Fast evolving flares less energetic than smoother ones



Progenitor-independent models (disk/jet)

Gravitationally driven models  [Perna, Armitage
' & Zhang 2006]

Observed correlation between ot and t,
suggestive of viscous accretion
of material in clumps/ rings

lo_r T T

' Semianalytical calculations o
hyperaccreting disks show




SuMmmary

Early observations with Swift have shown the presence
of plateaus and flares superimposed on the afterglow

% Ideas not lacking for explaining both plateaus and flares

What s next?
¥ As larger statistical samples allow better characterization
of the properties of the long term emission, the various
models will have to confront them guantitatively.

W Similarities between flares in long and short GRBs will
need to be accounted for.

¢ Look for independent diagnostics: e.g. polarization
in flares of magnetic origin (Fan et al. 2005); GW emission
in disk fragmentation (Piro & Pfhal 2007),



