

European Research Council

Superluminous supernovae and lightcurves powered by magnetars

S.J. Smartt

C. Inserra, M. Nicholl, A. Jerkstrand, T.W. Chen, M. McCrum, R. Kotak Queen's University Belfast

European Research Council

Superluminous supernovae and lightcurves powered by magnetic neutron stars

S.J. Smartt

C. Inserra, M. Nicholl, A. Jerkstrand, T.W. Chen, M. McCrum, R. Kotak Queen's University Belfast

Superluminous supernovae

PTF discoveries : Quimby et al. Nature 2011

 What are they : stellar Explosions in dwarf galaxies – 100 times more luminous than core-collapse SNe.

- Luminosity source unconfirmed.
- No hydrogen and helium seen in spectra
- What is the physics powering this extreme luminosity ?

PSI : has discovered them at redshift ranges $z \sim 0.1 - 1.5$

- z = 0.1 0.3 in the 3Pi survey
- z = 0.5 1.5 in the MD fields

Chomiuk et al. 2011, Berger et al. 2012, Nicholl, Smartt et al. 2013, Inserra, Smartt et al. 2013, Chornock et al. 2013, Lunnan et al. 2013+2014

0.0

Wavelength (Å)

Barbary et al. 2009, ApJ, 690, 1658

What was SCP 06F6?

- Galactic Transient?
- WD-asteroid collision?
- Micro-lensing event?
- Broad abs. line QUASAR?
- Pair-production SNe?
- Ejecta-CSM interacting SN?
- SN explosion of a C star?
- Tidal disruption of a C star by a BH?

Barbary et al. 2009, ApJ, 690, 1358 Gansicke et al. 2009, ApJ, 679,L, 129 Chatzopoulos et al. 2009, ApJ, 704, 1251 Soker et al. 2010 New A., 15, 189

Superluminous stellar explosions

Palomar Transient Factory

No H or He detected in SN spectra

SN 2010gx

Pastorello, Smartt et al. 2010,

Pan-STARRSI : Two superluminous SNe at $z \approx 0.9$

- Major effort at CfA/QUB/JHU/IfA for spectra of PS1 targets
- Chomiuk, Chornock et al. 2011 ,ApJ
- Two orphans "twins" in MD09:
 - PS1-10awh : end of season
 - PS1-10ky : start of season

Two "ultra-luminous" SNe at $z \approx 0.9$

Chomiuk et al. 2011

⁵⁶Ni powered luminoisty is unphysical

Figure 1: The bolometric light curve of model CO138 ($M_{\rm CO} = 13.8M_{\odot}$, $E_{\rm exp} = 3 \times 10^{52}$ ergs, $M_{56} = 0.7M_{\odot}$) compared with the observations of SN1998bw. The time of the core collapse is set at the detection of the

Iwamoto et al. (1998)

Scaling relations ("Arnett's law") means $M_{Ni} > M_{ej}$ See Chomiuk et al. (2011)

Faster, hotter, brighter

$$L = 4\pi\sigma r^{2}T^{4}$$

$$\frac{r_{SLSN}}{r_{Ic}} \sim \frac{v_{SLSN}t}{v_{Ic}t} \sim 2$$

$$\frac{T_{SLSN}}{T_{Ic}} \sim 2$$

- $L_{SLSN}/L_{lc} \sim 50$ -100 from simplistic estimates from v_{exp} and T_{eff}
- Approximately matches the luminosity ratios at peak to 20 days (~50)

Inserra, Smartt et al. 2013 ; 2007gr data from Hunter et al. 2009

Magnetar models

$$E_p = \frac{I_{ns}\Omega_i^2}{2} = 2 \times 10^{50} P_{10}^{-2} \text{erg}$$

- If NS formed spinning at P = 2-20 ms and B ~ 10¹⁴ G
- Rapid spin down powers extra energy in expanding SN
- If diffusion time is similar to spin down time :

Kasen & Bildsten 2010

$$L_{peak} \sim \frac{E_p t_p}{t_d^2} \sim 5 \times 10^{43} (B_{14}^{-2} \kappa_{es}^{-1} M_5^{-3/2} E_{51}^{1/2}) \text{ erg s}^{-1}$$

Kasen & Bildsten 2010, Woosley 2010, Dessart et al. 2012

Magnetar fits

- Inserra, Smartt, Jerkstrand et al. 2013
- Semi-analytic model diffusion
- Arnett (1982) + Kasen & Bildsten magnetar powering
 - Assume full trapping of magnetar radiation
 - Magnetar luminosity depends on B₁₄ and P_{ms}
 - Four free parameters : B_{14} , P_{ms} , τ_{diff} , t_0 - No ⁵⁶Ni needed
- 44.5 44.5 Magnetar model ⁵⁶Ni model 44 44 (1-s 43.5 -s 43 - d 43 (1-s 43.5 43 r (erg s 43 43 43 PTF10hgi SN2011ke M_{ei} = 3.9 M_{sur} M_{ei} = 8.6 M_{sur} $B = 3.6 \times 10^{14} G$ $B = 6.4 \times 10^{14} G$ P = 7.2 ms P = 1.7 ms 42 42 41.5¹ 41.5 0 200 300 400 200 300 100 100 400 Days since explosion Days since explosion 44 45 PTF11rks 43.5 44.5 $M_{ei} = 2.8 M_{sun}$ SN2011kf log L (erg s⁻¹) 43.2 43 $B = 6.8 \times 10^{14} G$ log L (erg s⁻¹) 43 M_{oi} = 2.6 M_{su} P = 7.5 ms $B = 4.7 \times 10^{14} G$ P = 2.0 ms42.5 42 42.5 41.5 41 42 0 100 200 300 400 0 100 200 300 400 Days since explosion Days since explosion 44.5 44 SN2010gx 44 43.5 M_{ei} = 7.1 M_{sun} log L (erg s⁻¹) dg L (erg s⁻¹) dg L (erg s⁻¹) dg L (erg s⁻¹) (1-s 43.5 (1-s 6L9) 43 1 60 42.5 SN2012il $B = 7.4 \times 10^{14} G$ P = 2.0 ms $\begin{array}{l} \mathsf{M}_{ej} \\ \mathsf{B} = 4.1 \times 10^{14} \, \mathrm{G} \end{array}$ P = 6.1 ms41.5 42 41.5 41 0 100 200 300 400 0 100 200 300 400 Days since explosion Days since explosion

Shock breakout and CSM interaction

- Kinetic energy converted to radiation, via ejecta – CSM interaction
- Need dense, truncated
 CSM wind = shell

$$r_w \approx \left(\frac{L}{4\pi\sigma T^4}\right)^{1/2} \approx 10^4 R_{sol}$$

- For diffusion time ~10 days :
 - $\sim 6M_{sol}$ in shell
 - $v_w = 1000 \text{ kms}^{-1}$
 - Extreme WR mass-loss?

a) Calculation Observation 10⁴ Ginzberg & Balberg (2012) Luminosity (erg s^{-1}) b_{tb} SN2010ax log(L) $\frac{R_d}{v_{sh}}$ R_d 10⁴² -50 0 50 100 150 Time (days)

> Chevalier & Irwin 2011 Ginzberg & Balberg 2012 Moriya et al. 2011

Discussed in Chomiuk et al. 2011

Superluminous supernovae: slowly declining

Slowly declining SLSNe : decline rates which do match large ejecta masses of ⁵⁶Ni

Labelled "SLSN-R"

Gal-Yam "Luminous Supernovae" review in Science (2012)

Discoveries in PS1 : McCrum, Smartt et al. 2014

And early constraints on PTF12dam Nicholl, Smartt et al. 2014

SN2007bi – a PISN ?

 \bigcirc

- SN2007bi discovered by NSF (r = 17.8; Gal-Yam et al. 09) at z= 0.129
- Low metallicity, dwarf host : $M_{\rm B}$ = -16.4± 0.2
 - 12 + log(O/H) = 8.1 \pm 0.2 (0.25Z_{\odot} ; Young, Smartt et al. 09)

- Proposed to be first pair-instability supernova
- Explosion of M_{core} ≈ 100 M_☉
- Powered by 3-6 M_☉ of ⁵⁶Ni
- Good Lightcurve fit
- Nebular Spectral analysis : consistent with 3-6 M_☉ of ⁵⁶Ni
- **P** Total ejecta mass of 50-60 M_{\odot}
- Consistency in solution but not unique

Models from Kasen, Woosley & Heger 2011

Pair-instability SNe

- Massive CO cores in $>100M_{\odot}$ stars
- T ~ 10⁹ : e⁻ e⁺ production and thermal pressure decrease
- Thermonuclear runaway in ~60M_☉ CO core

 $E_{\text{kinetic}} \approx 3 - 100 \times 10^{51} \text{ ergs} \\ \text{Mass } {}^{56}\text{Ni} \approx 2 - 20 M_{\odot}$

- Possible progenitor stars :
- $Z < Z_{\odot}/1000$ Wolf-Rayet stars (rapid rotators)

Z<Z/₀3 H-rich supergiants (LBV-type)

 T_c and ρ_c in massive, low-Z stars From Langer et al. 2007

See :

Barkat et al. 1967, Heger et al. 03, Woosley et al. 07 Scannapieco et al. 05

Do pair-instability SNe exist ?

PTF12dam

• z=0.107

- PTF Atel #4121 : critical explosion epochs recovered in PS1 3π
- SWIFT UV, plus NIR JHK
- Earliest multi-colour discovery in 3π means explosion date constraint
- Best data set for quantitative comparison to models

Nicholl, Smartt et al. 2013,

- Discovered on 1st day of 2011 observing season of MD05
- Excellent lightcurve
- Optical spectra probe rest frame 2000-3000Å
- Identical spectra and lightcurves
 to PS1-12arh

McCrum, Smartt et al. 2014

Lightcurves do not match PISN models

From : Nicholl, Smartt et al. 2013, Nature

Models : Kasen et al. 2011 Dessart et al. 2014

NUV spectra

- Magnetar model reproduces blue colours: high energy input per unit ejected mass
- Fe III and O II lines dominate our spectra around peak
- C II, Si III and Mg II lines overpredicted (but are strong in many SLSN - Quimby et al. 2011)
- Pair-instability spectra drop rapidly near-UV : metal line absorption

Models from Dessart et al. 2012; Kasen et al. 2011

Magnetar powered SNe

PSI – excellent lightcurves and explosion epochs

Magnetar powered <u>model</u> fits well : $M_{ej} = 10-16M_{\odot}$ B ~ 10^{14} G P ~ 2.6 ms

- Major PS1 3-yr result : pair-instability SNe do not exist. Or very low rate (< 10⁻⁵ of all core collapse SNe)
- <u>All</u> superluminous SNe could be explained with magnetars
- Nicholl, Smartt et al., 2013, Nature

Host galaxy of SN2010gx

6

g= 23.5 M_a = -16.5

From electron temperature, direct method $12 + \log\left(\frac{O}{H}\right) = 7.46 \pm 0.1$

- Dwarf galaxy
- Metallicity of $0.06Z_{\odot}$
- Is low metallicity a requirement ?

5 0.3 Hγ ⁻lux [10⁻¹⁷ erg/s/cm²/Angs] [0]]]] 4 0.0 Mmmm 3 [OIII 4300 4400 6500 6600 6700 6800 2 [OII] [NII] when I when the second data in the life of 0 HB Ηδ Hα [0]]]] [011] [SII] [Nell]] -1 3500 4000 4500 5000 5500 6000 6500 7000 Wavelength [Angs]

Chen, Smartt, et al. 2013

Host environments of SLSNe

- Main properties of 31 SLSN host galaxies (0.1 < z < 1.6) in Lunnan et al.
 2013
 - low luminosity ($M_B \sim -17.3 \text{ mag}$)
 - low mass (~ 2 x $10^8 M_{\odot}$)
 - high-medium specific star formation rate (~ 2 Gyr⁻¹)
 - low metallicity (~ 0.45 Z_{\odot})
 - similar with long-GRB hosts

Stellar mass vs. star-formation rate of SLSN, CCSN, GRB hosts and green peas. The grey line shows the specific star-formation rate. (28 long-GRB hosts are the same, different SFR tracers applied.)

Lunnan et al. 2013, Chen et al. 2013, Chen et al. in prep.

Low metallicity plays a crucial role?

Also – Lunnan et al. : Metallicity distribution of 15 SLSN hosts is consistent with long-GRB hosts, but not with the type Ib/c SN hosts. Lunnan et al. 2013, Chen et al. 2013, Chen et al. in prep.

Luminosity-metallicity relationship of dwarf galaxies in the local Universe and SLSN hosts. (The gray line shows the normal galaxy distribution.)

SLSNe Rates

- PS1 Medium Deep Survey : 70 square degrees
- Typical depth per night 23.5^m in *griz_{P1}*
- Over first 1.3 yr : major campaign by QUB, CfA, JHU, IfA for spectra
- 249 "hostless" transients
- 9 SLSNe (type I) within
 0.5 < z < 1.4
- Volumetric rates :

SLSN

$$\frac{5LSN}{CCSN} rate = between \ 0.6 \pm 0.3 \times 10^{-4} \text{ and } 1.0 \pm 0.3 \times 10^{-4}$$

Compare with (LGRB $\sim 0.3\%$ of Ibc rate)

 $\frac{LGRB}{CCSN} rate \approx 10^{-3}$

McCrum, Smartt et al. 2014, to be submitted

Also see Chomiuk et al. 2011, Berger et al. 2012, Lunnan et al. 2013, Chornock et al. 2013

PSI-I0afx (...and OGLE-2013-079)

- High redshift transient
- z = 1.388
- Peak
- Spectra don't resemble other SLSNe
- Fast rise time
- Magnetar model not physical – LC works, but requires too high v_{exp}, and T_{eff}
- Similar event found in OGLE-IV, and followed by PESSTO (z=0.44)

Chornock et al. 2013, Inserra et al., in prep.

Four SLSNe in PESSTO

- SN2013dg good fit with Magnetar
- CSS121015 SLSN Ic with possible hydrogen, narrow, transient, detected (SLSN II)
- LSQ12dlf lightcurve fit implies unphysical values
- SSS120810 unusual re-brightening after 110d

Nicholl, Smartt et al. in prep ; Bennetti, Nicholl et al., 2014, sub.

Summary

- I. SLSNe found in Pan-STARRS, PTF, CSS by large volume, unbiased surveys, 100 times more luminous than CCSNe
 - Pan-STARRSI : from z~0.1 to z~1.5
 - <u>Nearly</u> all *could* be explained by magnetar powering
 - Physical solutions ejecta masses and energies similar to SNe Ic
 - Pair-instability SNe not discovered (at low redshift)
- 2. Host galaxies faint dwarfs, and (all?) low metallicity
 - Typically $Z < 0.1 Z_{\odot}$
 - Metallicity likely causal effect possibly rotation related
- 3. Pan-STARRSI rates : $0.6 1.0 \times 10^{-4}$ of the CCSN rate
 - Now easy to identify and find : $\Delta m_{host-SN} \sim 2-4$