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Galilei to Cosimo Il Medici

e |Tis Impossible to obtain wages from a republic [...] without
having duties attached. [...] so long as | am capable of lecturing
and serving, o one in the republic can exempt me from duty
while | receive pay. | can hope to enjoy these benefits only from
an absolute ruler.

Galilel, Opere x, 348 ff
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GRBMAGi14 - The magnetic fields!

Magnetars (Thompson& Duncan)
e Magnetars are powered by
dissipation of ~ 10'S G B-field

Ep ~ 10*"b7; erg

e B-field determines the available
energy

e Questions:

e How B-field is generated and
evolves in the crust/core

e Properties of the crust (plastic
or brittle deformations) - How
crusts gates the flares

D — T —

Monday, January 20, 2014



GRBMAGi14 - The magnetic fields!

Magnetars (Thompson& Duncan) Magnetars & GRBs
e Magnetars are powered by Usov (] 992) millisecond magnetar:
dissipation of ~ 10'5 G B-field GRB outflows are powered by
4719 rotational energy of the compact
Ep ~ 107"b75 erg object, transported away by B-field

E.ot ~5x10%2P-2 erg

msecC

e B-field determines the available . More like Pulsar - PWN, just more

energy

D powerful RO\ 2 ,

* Questions: Laipole ~ B*R*c —> = Y
* How B-field is generated and C

R~10km,B~ 10" G
e Formed in

evolves in the crust/core
e Properties of the crust (plastic

or brittle deformations) - How * core collapse
crusts gates the flares * NS-NS merger
e AIC of a WD

: —2
e spindown:. T ~ 100 sec Prisec 15
e Usov: LGRBs,~ 100 sec
e Plateauxin LGRBs (Fan+): ~ 10% sec

e prompt tails in SGRBs (Metzger+) ~
B— —SNN
100 sec
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evolves in the crust/core
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or brittle deformations) - How
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I —

Magnetars & GRBs

* Usov (1992) millisecond magnetar:
GRB outflows are powered by
rotational energy of the compact
object, transported away by B-field

Erot ~ 5 x 10°2P52 erg

msecC

 More like Pulsar - PWN, just more

powerful RO\ 2 ,

Laipole ~ B*R?c —> = IQQ
C

R~10km,B~ 10" G

e Formed in
e core collapse
 NS-NS merger
e AIC of a WD
e spindown: T ~ 100 sec Pésec 1_52
e Usov: LGRBs,~ 100 sec
e Plateauxin LGRBs (Fan+): ~ 10% sec

* prompt tails in SGRBs (Metzger+) ~
100 sec
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GRBMAGi14 - The magnetic fields!

Magnetars (Thompson& Duncan)

e Magnetars are powered by
dissipation of ~ 10'S G B-field

Ep ~ 10%7b%; erg]

few GRB flares?

e B-field determines the available
energy

e Questions:

e How B-field is generated and i,
evolves in the crust/core R = . B~10°G
e Properties of the crust (plasti * Formedin )

Magnetars & GRBs

* Usov (1992) millisecond magnetar:

GRB outflows are powered by
rotational energy of the compact
object, transported away by B-field

Erot ~ 5 x 10°2P52 erg

msecC

 More like Pulsar - PWN, just more

powerful

Q) .
Laipole ~ B*R?c R—> = IQQ

C

or brittle
crusts ga

B-field determines the rate of energy
release, NOT the energy content (rotational)

e
oI

I —

AICOTAO WD

e spindown: T ~ 100 sec Pésec
e Usov: LGRBs,~ 100 sec

e Plateauxin LGRBs (Fan+): ~ 10% sec
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GRBs: magnetically driven

e Long term activity: but nu-fluxes are
short lived, ~ seconds

e neutrinos drive baryon contamination
e Colliding shells? - Really fine tfuned

Flare @ 100- 1075 sec in Short!

Fl
-~
<

Time s Gehrels et al. 2009  mmew
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GRBs: magnetically driven, as PWNe

e Long term activity: but nu-fluxes are
short lived, ~ seconds

e neutrinos drive baryon contamination
e Colliding shells? - Really fine tfuned

Flare @ 100- 1075 sec in Short!

Fl
e
<

Time s Gehrels et al. 2009  mmew
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GRBs: magnetically driven, as PWNe

e Long term activity: but nu-fluxes are
short lived, ~ seconds

e neutrinos drive baryon contamination
e Colliding shells? - Really fine tfuned

Flare @ 100- 1075 sec in Short!

. \ | . Which flare as well: constant
7! % uan energy supply produces bursts
U el a: 4T g W on sub-dynamical scales

Fl
e
<

Time s Gehrels et al. 2009  mmew
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Unipolar dynamo (Faraday wheel)

Corona/magnetosphere with ¢ >> 1

y N
B-feld

Heavy conducting disk: NS or
BH or accretion disk

o

B2

T 4r pC?
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Unipolar dynamo (Faraday wheel)

g

A

e
<.

Corona/magnetosphere with ¢ >> 1
I ~Vo >>1
> Bﬁ@/&ll
> Outflow speed is not related
= to Keplerian velocity
>

Heavy conducting disk: NS or
BH or accretion disk

o

Bz

T 4r pC?
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Interesting concept... does it work?

e Can 0 >> 1 magnetosphere be realized?

* hot plasma (core collapse or NS-NS merger) - nu-driven contamination by
baryons, but only for few seconds

e dissipation inside a star (later in the talk)
 GRB ouftflows must be clean - yes, it can.

e How B-fields accelerate and collimate the flow

e Do B-fields continue into the outflow?¢
e fireball model: no, but are recreated at matter-dominated shocks

* EM model (Lyutikov & Blandford 2003): yes, dissipation & acceleration is
magnetic (not shocks)

 Are there evidence of large-scale B-fields? - Polarization
e prompt (Coburn & Boggs 2003, others)
o optical afterglows (e.g., Mundell+ 2013, others)

e How B-field dissipates and accelerates particles

e
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B-field generation (need ~ 10'> G)

Core-collapse (Long GRBs) NS-NS mergers (Short GRBs)

e Compression, shear, turbulent, MR
and/or alpha-Omega dynamo
operate during

collapse and
core bounce

| Endeve +. 2013™

* Most MHD core-collapse « dynamo in the supermassive NS
simulafions do not freat B-field (Price & Rosswog)?

generation, but start with huge
magnetic fluxes.

e Even non-magnetic explosions are
not settled...

e shearin the torus (Rezzola+)<e
e (Both saw amplification to > 10> G)
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B-field generation (need ~ 10'> G)

Core-collapse (Long GRBs) NS-NS mergers (Short GRBs)

e Compression, shear, turbulent, MR
and/or alpha-Omega dynamo
operate during

collapse and
core bounce

Endeve +. 2013™

* Most MHD core-collapse « dynamo in the supermassive NS
simulafions do not freat B-field (Price & Rosswog)?

generation, but start with huge
magnetic fluxes.

e Even non-magnetic explosions are
not settled...

e shearin the torus (Rezzola+)<e
e (Both saw amplification to > 10> G)

Extremely challenging simulations

I — T S — ————————
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Two types of Faraday wheel in GRBs

e Collapsar: AGN-like (BZ)  Milisecond magnetar: PWN-like

BH
e B-fields are externally supplied e B-fields are intrinsic
and confined o a BH « Equatorially collimated initially
(Blandford-Znajek) T, .2
. x sin” 6
e Confining walls (Lynden-Bell,

e Strong shock - stop!

Uzdensky) “Slowly” collimated by h
o . « “Slowly" collimated by hoop
High-Gamma jet, superfast stresses, sub-fast/super-Alfvenic

* Perhaps a weak oblique plume (later nozzles out to super-
collimation shock, but mostly fast)

confinuous nozzle-like |
Komissarov+,

acceleration Sodil
Bucciantini+
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Two types of Faraday wheel in GRBs

» Collapsar: AGN-like (BZ) e Millisecond magnetar] PWN-like |
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e Confining walls (Lynden-Bell,

e Strong shock - stop!

Uzdensky) “Slowly” colimated by h
o . ¢ “Slowly” collimated by hoop
High-Gamma jet, superfast stresses, sub-fast/super-Alfvenic

* Perhaps a weak oblique plume (later nozzles out to super-
collimation shock, but mostly fast)

continuous nozzle-like

acceleration Komllssa.ro.v+,
Bucciantini+
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Two types of Faraday wheel in GRBs

» Collapsar: AGN-like (BZ) e Millisecond magnetar] PWN-like |

BH

Looks good! ?

e B-fields are externally supplied e B-fields are intrinsic
and confined to a BH « Equatorially collimated initially
(Blandford-Znajek) I, o SiI12 0 ‘

e Confining walls (Lynden-Bell, « Sfrong shock - sfop!

Uzdensky) “Slowly” colimated by h
o . ¢ “Slowly” collimated by hoop
High-Gamma jet, superfast stresses, sub-fast/super-Alfvenic

* Perhaps a weak oblique plume (later nozzles out to super-
collimation shock, but mostly fast)

continuous nozzle-like
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- e—
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Two types of Faraday wheel in GRBs

» Collapsar: AGN-like (BZ) e Millisecond magnetar] PWN-like |

|

e In oppllco’non to Long GRBs central englne bo’rh types of model
have two related problems in making a jet

e the sigma problem

' e stability
and confined to a BH « Equatorially collimated initially
(Blandford-Znajek) I, o SiI12 0 ‘

e Confining walls (Lynden-Bell, . OF - |
Uzdensky] Strong shock - stop!

» “Slowly” collimated by hoop

* High-Gamma jet, superfast stresses, sub-fast/super-Alfvenic

* Perhaps a weak oblique plume (later nozzles out to super-
collimation shock, but mostly fast)
confinuous nozzle-like |
acceleration Komissarov+,

Bucciantini+
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(Lyutikov cir. 2003)

The sigma problem .....c..

Kennel & Coroniti

Consider a fixed cavity into which a central
source injects energy and magnetic flux
linearly with time. E.g. magnetar cavity is
nearly constant on light travel time.

Stored B-flux ~ t, toroidal B-field ~ t, stored
energy ~ B2 ~ t2 2?7

Kennel&Coroniti: in 0 > 7, reverse shock

would reach the central engine in light
crossing time and model breaks down

Vrs~ c for o >7
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(Lyutikov cir. 2003)

Possible resolutions

- Kennel & Coroniti: 0 must change to << 1 on the way.

(NB: this is a requirement of the self-consistency of the model, not a
measured parameter within the model).

- 0 remains high, but shock is not MHD (kinetic effects dominate,
Lyubarsky). Unlikely in magnetars, too dense.

- Most of magnetic flux should be destroyed between the source
and the boundary. The flow must become dissipative.
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Plasma will flow towards

reconnection cites
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(Lyutikov 2010)

Ideal flow in the bulk, dissipation
on the axis & equator

A

IVI? = r?sin? OADOV P Boundary

- Current and charge distributions of the cavity
flow lines

are related
ExB rsinf(ey, x VO) /\
V = —
B2 21

- Vanishing charge and current I sepafatrlx 0=0~

densities in the bulk.
- |=I0 - current on the axis

t 0
q>:<1>0<1—5>1n a1 2

@*
r tan = 5

On the axis: toothpaste tube effect
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Porth et al .2013

The stability problem

 How to kill flux: twisted B-field susceptible to kink instabilities

 First 3D relativistic MHD simulations of PWN, sigma >> 1

1

5.0 0.0
O .0

1.6 0.5 0.0 (.= 1.6 1.6 LR R 0= 1.6
« 10" !

* Magnetic flux is desiroyed. Sigma .problem solved.

e axially-symmetric simulations way overestimated the stability
and Lorentz factor of the jets: 3D jets are slow and susceptible to
iInstabilities (in BH-driven jets as well).

e But there is no jet left, only a plume.... Sigma problem became
the no-jet problem (~OK for PWNe, not OK for GRBs)

———‘
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And what to do?... Wait a second

. . Lyutikov 2010
 Wait a few seconds for neutrinos to i L ‘
do the hard part, explode the star. | ey “
e B-field is amplified on a contracting
proto-NS. Launch a slightly non-
. . _ t=.95 t.
spherical shock inside a star. ;
* FS propagates in expanding
envelope (v ~r), with sharp density z :
gradient - shock accelerates, makes
a key hole (chimney)
t=.9 tru _t=.9 to
IO\ L )
=8t =8 t4.
j‘\\\._,AJ---t=.7 Crax ‘l‘ t=.7 to
: \ \T J t=.5 tou \ t=. 5 gL .
00 05 10 71-5— S 23D l)l) 05 10 711 25 30
Anisotropic driving Anisotropic rg
2
1 + cos“ 6

s Lyutikov &
Komissarov, in prep
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After the break-out the wind reaccelerates

wind re-
acceleration

e Force balance:I' ~ I'y/sin # (but: instabilities?)

e Engine active for 100s secs: magnetars are good
for late activity (no need for long accretion)
* not by powering the FS (little energy), but by internal
dissipation in the long-lasting wind
e But magnetar emission is smoothe - Peaks in the
profile are signatures of the bursty dissipation in

the wind, not the central engine activity (Lyutikov &
Blandford 2003, Lyutikov 2006)

S — e ————

afterglow

I'=Ty/Sin®

shell
instability

magnetic
shell

ey
emission

Lyutikov 2003

Lyutikov 2003
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Bursty dissipation in the wind.:

Crab flares!

- 1200 I T : J T

v 1000 Hare < tayn
s . 4-day flare z
0 Sept 2010 + :
o 600 - ]
o}

£ 400 F .
; 200 [FEEE +++++‘+++$++ '+'+ """"""""

55140 55460 55480

Time [MJD]

Tavani et al. 2011

Accelerating E- fleld < B-field

4e* 3272
?S))m203
27 mhc
b, = T n = 236 MeV.
70
Lyutikov ‘10,
Komissarov & Lyutikov ’11
de Jager ‘98 (for shocks)

elblc = neBc =

e2

—
o
&

E%F [erg cm™2s]
3

—_
|

-

—

Recall: magnetar models of
GRBs ~ models of PWNe

%ﬁ***** fIare spectrum
’f‘*,. , break 4()0 M@X/

E o !‘.;a'
i - )
‘0. 1
B S
- K3 Xy
I
N
E 4 T
S =wal il IIII| | 1 IIIIII|

Beuhler et al.. 2011
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Bursty dissipation in the wind: Recall: magnetar models of
GRBs ~ models of PWNe
Crab flares!

[T | TTTT “| T jul
-, %* fIare spectrum ccccccccccc i
- 1200 — - 1095_7“, *‘-0_,, break 4()() M@X/ -
v 1000 | tare < Tdyn i B L +—-— A iE S
E s00 | 4-day flare : '510_10? ____________________ — 1?* __________ Fp s P
z L Sept 2010 ] 2 r ‘ ]
S 600 ~ ] : B “““ 7
% 400; + + _: ciI.IJ-IO_nE_ JJJ
] — * --------------------- : I T O R |
55440 55460 55480 e N N T o
Time [MJD] TavarPetsl12010
Tavani et al. 2011 Beuhler et al., 2011
Accelerating E- ffld < B-field * Highly magnetized, sigma >> 1, shocks are
6 . . .
eEc = neBe = — B24? weak, not likely to be efficient
O9m=<c accelerators.
27  mhdc’ : . .
E, = n—5— = 2367 MeV.  All the energy in the B-field: accelerate
. 11657 € oarticles directly via reconnection.
yutikov ‘10, .
Komissarov & Lyutikov 11  Paradigm change (?): some (mosit?)
de Jager "98 (for shocks) particles are accelerated by magnetic
reconnection (and not shocks)
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Reconnection: efficient, non-stationary

Reconnection in sigma >> 1
plasma: outflow can be

relativistic (Lyutikov & Uzdensky
2002, Lyubarsky)

\\\‘\.___ | u<<v,
\\\ SN — - e
NN

Cerutti, Uzdensky+

New plasma physics regime: sigma >> 1 b i L
plasma. , )} 5%

 What are dynamic and dissipative
properties of such plasmas? - very different
from laboratory and space plasmas.

e Pulsar winds, AGN & GRB jets and
magnetospheres of BHs

o Alfven velocity is highly relativistic
e E-fleld is dynamically important
e charge density is important
T — —
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Reconnection can be bursty from smooth
conditions

e Current sheet can be
unstable to tearing

Lyutikov 2003, Komissarov+ 2007
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Reconnection can be bursty from smooth
conditions

e Current sheet can be
unstable to tearing

E) ]
y x 10
)
‘05
> 0
.os
1
d 3 .
B
4

: 03
os

- ———————
! 04
.u2

Lyutikov 2003, Komissarov+ 2007

I — 5
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Reconnection can be bursty from smooth
conditions

e Current sheet can be
unstable to Teoring

plasm0|ds

Lyutlkov 2003 Komissarov+ 2007

L ee— T
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Reconnection can be bursty from smooth
conditions

e Current sheet can be
unstable to Teoring

plasm0|ds

Lyutlkov 2003 Komissarov+ 2007

L ee— T
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Reconnection can be bursty from smooth
conditions

e Current sheet can be X-point collapse (non-linear tearinge):
unstable to tearing

; -os : N . / ]
| i W]
w | / N
.. . -/ W4 ;/P\\\ ]

R R plasmoids | | .. /777 SN\ |

_ Reiected) | | 7o
> - 72 NS\

“““““““““““
04 ~10 ~05 00 05 10
02

'Lzutikov 2003, Komissarov+ 2007

T
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Reconnection can be bursty from smooth
conditions

« Current sheet can be X-point collapse (non-linear fearing?):
i N ] P e e
unstable to tearing N i
NN e S e s i
. NN e s e
4 -',“’ AN\ /; // /7 P S SRR
- VWIS S
: | o XA Jp e\
R iy NS e
¢ 4 g : ’ - 1 : / /, - = 3 : -05r :::‘/::::::::::::
; plasmoids s [ NN e e s S S s el
S, f SRR NN\ T T T T — :
. // D\ ] [T T
| !g jected) ; %{fé/é§;:z\\\‘\§§\§§ ] e S D S S
08 1ol %’»/,//é?//‘/‘\ss\\‘ﬁ\ il 1 7_1‘0‘ ﬂkjgs—*i‘k;:‘—&;:g ‘ 1‘07

_ i o explosive dynamics on Alfven (light) fime

| Lyutikov 2003, Komissarov+ 2007 * Starting with smooth conditions
E—
e E ~ Bo (field outside), E>B with resistivity

T —
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Reconnection can be bursty from smooth
conditions

e Current sheet can be X-point collapse (non-linear tearing?):
unstable to tearing | §\§§§\§§5;;;2%/7/ curre
: NN 7
' -?‘“ \\\\\ NN’ /;// | :
| A | NS i |
> 0 ool X' N A / ) 0or )
05 | l / l Y N\ Q R \ \(u K : :
i_, . r/// {/'/ [ - \‘\‘\‘\»\\\\ p
o - plasmoids wel /A N : —
8, i | /«—\\ \\\ I
ected G N N\ e
|

_ i o explosive dynamics on Alfven (light) fime

| Lyutikov 2003, Komissarov+ 2007 * Starting with smooth conditions
E—
e E ~ Bo (field outside), E>B with resistivity

T —
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Reconnection can be bursty from smooth
conditions

e Current sheet can be X-point collapse (non-linear tearing?):

unstable to tearing NSz curren
L \ ~ >~ " ]

>4 | -:s «\T'//’/;t f 7 - ] N
| i | /' ///\\\\ SNt =

R R plasmoids wsl WA TS \\\\ ‘ —
!’ﬂeﬂed) | == ==

_ i o explosive dynamics on Alfven (light) fime

'Lzutikov 2003, Komissarov+ 2007 e Starting with smooth conditions
e E ~ Bo (field outside), E>B with resistivity
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00+
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Finite time singularity

T —

a(t)

o B~ O X©

-
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Mini-jets in Crab

Reconnection minijets

/—T\ [~ few

light cylinder

Clausen-Brown, Lyutikov 2012

eprobability of flggﬁ flux
p(F)dF < F 71 dF = L ar

eaverage flare flux is domir@ted by
bright rare flares.

120¢ .
April 2011
~ -« — B —
100 type flares
5 8o
P Sept 2010
; éol type flares
= |
A 40} } I
5 |
=
20' | . a2 : . |
" It » + .~ » t 1 .‘
—-bk.-f-u‘m-fn—'- St st s —
0
0 500 1000 1500 2000 2500 3000 3500 4000
days (assuming T = ~4 days)
mun
Power-law from shot noise!
T — —
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Mini-jets in Crab

Reconnection minijets

/T\ [~ few

light cylinder

e Crab flares are an example how
magnetic reconnection

e can produce bursty radiation

e Ccan accelerate particles up to
the radiation reaction limit, that
radiate efficiently (nheeded
number of leptons produced by
Crab in only 1 sec)

1201 .
il 2011
+ — A ——
100 type flares
5 sl
P Sept 2010
= type flares
> 60}
: I
: 401 T '
=
=
20| .
” e S n .. I - "
S (1[I N SN S T . P g 2
r——— P - e ey ey e S

Clausen-Brown, Lyutikov 2012

eprobability of fIarq flux
_g9*! 1
p(F)dF o< F 9 dF =~ —dF
eaverage flare flux is domir@ted by
bright rare flares.

0
0 500 1000 1500 2000 2500 3000 3500 4000

days (assuming T e = 4 days)

Power-law from shot noise!
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ast variability from large radlii,

~41015.101
Ren~10-10"cm .. .0
» Emission is beamed in outflow frame é/

—  really beamed A0 <<1 AR

—  random internal motion of emitters, 4@ ~ 1/y,_, o

» X-flares and breaks are tails of prompt

> fast varilil

» 10 need for long central engine activity

» softening with time, barder spikes

» These are preliminary results: alternatives need to be investigated

rbs&=5 0, ¥ rand— ]
0,,=x/10,

ojdz 3 oob
efficiency 10%

(Lostikan in prog.)
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geﬂgmxenmeicuﬂﬁRane?tlng

Lyutikov 2006 | Also: Ghisellini et al. 2008, Lazar et al. 2009, Giannios
i et al. 2009, Narayan & Kumar 2009

:‘é 1oaé_ | 4Xray flares _ J_ eff —_— 21 fyrand

At~ — s

i " g/l 7 8F Vrand .

% % FORB phase Observed emission can be highly
variable and with high efficiency
(tapping info most of the proper
N —— Y : volume)

10 100 Ssg)%% - 10¢ 10° 5

- Relativistic reconnection:

- Not fluid "turbulence”,

S — 1.06 jets with % g > 1
- RMﬁé?é]lens’rms will produc [BiLey 8|‘ Zd|e”5|<' 2004)
vI<< c turbulence ~i' - :
A

|
¥
24
42/ Binl
| |
| |

N~ . \L

B N S o s Tt e S e s e B

i s T ‘4_._.-/_\ il

w e
il

C (I - e

- Spectrum is harder during flare (Burrows et al 20€
- Are flares becoming longer and softer as func’riéﬂ"bﬁlér%o
time?

- Can some Shorts be “one spike Long”? (failed SN-type)

- Can explain optical -gamma correlations in 080319B<¢ E.Q.
emitting “blobs” expand, killing both

0.2
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Particle acceleration in reconnection

e Shock acceleration: correct kinetic spectrum of parficles follows
from macroscopic jump conditions

* Reconnection - no simple scaling...
e But same result! 5 10

Sironi

—
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Particle acceleration in reconnection

e Shock acceleration: correct kinetic spectrum of parficles follows
from macroscopic jump conditions

e Reconnection - no simple scaling...
e But same result! 3
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Long-lived engines in short GRBs
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NS-NS merger as paradigm for Short GRBS

261 [ms) 03¢ 8 68 [ms] 9 44 [ms]

- Active stage of NS-NS merger takes 10-100 msec,
then collapse into BH

10 ¢

10 ¢+

- Transient NS - 100 msec, (NOT 100 sec!)

-30

9 81 [ms] 10.2 [ms] 133 [ms]

- Very littfle mass is ejected, drains out quickly

10

- Many short GRBs have long 100 sec tails, 10
energetically comparable to the prompt spike.

30

10 10 30 10 10

- Many GRBs have late time flares, 10° sec | - « k) _—

TP AOAEAD

— GRB080503 -

e
“

Initial spike ] 06+ Extended emission | |
(16 ms binning) (10 s binning)

e
=)

o
W

045

# |

-02 00 02 04 06 08 0 50 100150200250300%

e
9

Count rate (s 'pix™")

<
o

(=)
—_

| | I I I | I I I | I I I | I ‘W‘Wé

ifux] L
0 20 40 60 80
Time from BAT trigger (s)

100 sec tail has ~ 30 times more
energy than the prompt spike
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NS-NS merger as paradigm for Short GRBS

561 [ms) 03¢ 8 68 [ms] 9 44 [ms]

- Active stage of NS-NS merger takes 10-100 msec,
then collapse into BH

10 ¢

10 ¢+

- Transient NS - 100 msec, (NOT 100 sec!)

-30

9 81 [ms] 13 3 [ms]

- Very littfle mass is ejected, drains out quickly

10

- Many short GRBs have long 100 sec tails, 10
energetically comparable to the prompt spike.

- Many GRBs have late time flares, 10° sec

TP AOAEAD

— GRB080503 -

S
[

Initial spike ] 06+ Extended emission | 7
(16 ms binning) (10 s binning)

e
=)

o
W

045

# |

-02 00 02 04 06 08 0 50 100150200250300%

How to explain energetically dominant activity on ~
100 sec, while the engine lives 10-100 msec?

e
9

Count rate (s 'pix™")

<
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(=)
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| | I I I | I I I | I I I | I ‘W‘Wé

ifux] L
0 20 40 60 80
Time from BAT trigger (s)

100 sec tail has ~ 30 times more
energy than the prompt spike
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Metzger+,

Can merger of two NSs leave a NS?
(millisecond magnetar)

e Thereis a 2Msun NS
e Need both Mns <1.2 Msun
e And throw out ~ 0.3 Msun
e And very stiff EOS

2.2

Ozel + 2010

2.0] T
Colapse

1.8

M; (M)

1.6

and GRB
1.4
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Metzger+,

Can merger of two NSs leave a NS?
(millisecond magnetar)

e Thereis a 2Msun NS
e Need both Mns <1.2 Msun
e And throw out ~ 0.3 Msun
e And very stiff EOS

2.2

Ozel + 2010

2.0} Promet
Colapse

1.8

M; (M)

1.6

and GRB
1.4
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Metzger+,

Can merger of two NSs leave a NS?
(millisecond magnetar)

e Thereis a 2Msun NS
e Need both Mns <1.2 Msun
e And throw out ~ 0.3 Msun
e And very stiff EOS

J182C (56
2.2 J1829+ *,2
} -1736
306 +073¢
Ozel +2010  Hiie:gss
J1518+4904
J1 -:3 .
: 81234112 o : double
7 : gig13t1e &2 ; @Puise-Toylor “””85.‘2{;%2 stor
5 i : i in M15
- i : double pulsor
J1889- (
' Efot , In NGC 6544
S U . .
191¢+ ) - e
A S s :
2.2 §1 t —e—, in NGC 6539
M; (Mg) ] 4 |
+1 ——
-4 ' ~ : e e
- lin Tér 5 :
_g : .'2'95 ms pulsor Wh|te dworf—
-7 ! i3 47 Tuc neutron stor
. ——
- : ST in NGC 6440 ——eo—i
- > = 4 in NGC 6441
- ‘
hEE —lo——j in NGC 6752
14— I - 4
1y | e
6+ 194 —e -
+1 ' °
-4 ' i1
=, e ‘main sequence— |
4 | .* _  neutron star binaries
I 0.0 0.5 1.0 159 2.0 29 3.0
Mo denn nbtone cnmnece (04 )
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e Thereis a 2Msun NS

M (Mg)

Metzger+,

Can merger of two NSs leave a NS?
(millisecond magnetar)

e Need both Mns <1.2 Msun
e And throw out ~ 0.3 Msun
e And very stiff EOS

-

ve SN
— ":"‘ :

— b

. L i® in NGC 6544
— .
l|_:._q
I -
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2.2
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Metzger+,

Can merger of two NSs leave a NS?
(millisecond magnetar)

e Thereis a 2Msun NS
e Need both Mns <1.2 Msun
e And throw out ~ 0.3 Msun
e And very stiff EOS

2.2

- k 1 o+ + J
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Metzger+,

Can merger of two NSs leave a NS?
(millisecond magnetar)

e Thereis a 2Msun NS
e Need both Mns <1.2 Msun
e And throw out ~ 0.3 Msun
e And very stiff EOS

2.2 :,’} '
18 :
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BHs part-timing as magnetars

Newly formed isolated spinning astrophysical
black holes can keep magnetic fields for times
much longer than predicted by the “No hair”
theorem, working as ~ millisecond magnetars
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o 1

e Rotating NS - unipolar inductor |
- generate plasma out of vacuum "
- open B-field lines to infinity

e Blandford & Zngjek: BHs do the same

e Qutside plasma: E.B =0 - frozen-in B-field

e |f a BH keeps producing plasma, like a NS, B- /2
fleld cannot slide off: field lines that K oforamme *
connected NS surface to infinity, has to Ll Lv // ' -
. e Y. Goldreich & Julian, 1969
connect horizon to infinity

-

ELECTRONS

]

WIND ZONE

PROTONS

 The “no hair” theorem is not applicable to collapse of rotating NSs: high
plasma conductivity infroduces topological constraint (frozen-in B-field).

Conserved number: open magnetic flux:

NB — 6(1300/(7T6h)
(I)oo ~ QWZBNSR S/(PNSc)

Can bbe measured at mnany BH hair
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o 1

e Rotating NS - unipolar inductor |
- generate plasma out of vacuum "
- open B-field lines to infinity

e Blandford & Zngjek: BHs do the same

e Qutside plasma: E.B =0 - frozen-in B-field

e |f a BH keeps producing plasma, like a NS, B-
fleld cannot slide off: field lines that A USRI
ted NS surface to infinity, has to s
connected I ce I Y, Goldreich & Julian, 1969
connect horizon to infinity

-

ELECTRONS

A

WIND ZONE

PROTONS

co Romrmc f:

'

 The “no hair” theorem is not applicable to collapse of rotating NSs: high
plasma conductivity infroduces topological constraint (frozen-in B-field).

Conserved number: open magnetic flux: Countable BH hair!

NB — 6(1300/(7T6h)
(I)oo ~ QWZBNSR S/(PNSc)

Can bbe measured at mnany BH hair
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BH can only have open field lines:
split monopole magnetosphere

 Analyfics: fime-dependent force-free B-field in Schwarzschild

geom. R2Q0sin 6 R 2
B(b:_ e Bsa B, = (_S) st
ar T
R\ ? cos 0B,
By =By, j,——2 (_> Cos
T @

Q=Q(r—t+r(l—a?)In(ra®)) a=+/1-2M/r

*
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BH can only have open field lines:
split monopole magnetosphere

pulsar

 Analyfics: fime-dependent force-free B-field in Schwarzschild

geom. R2Q0sin 6 2
B(b:_ e Bsa B, = (&) st
arTr T
2
By =By, j,——2 (&) cos 002 B,
T 84

Q=Q(r—t+r(l—a?)In(ra®)) a=+/1-2M/r

*
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BH can only have open field lines:
split monopole magnetosphere

pulsar collapse: closed field
~ lines absorbed

 Analyfics: fime-dependent force-free B-field in Schwarzschild

geom. R2Q0sin 6 2
B(b:_ e Bsa B, = (&) st
arTr T
2
s (1B
Ey = qua Jr = —2 (R_> cos
T 84

Q=Q(r—t+r(l—a?)In(ra®)) a=+/1-2M/r

*
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BH can only have open field lines:
split monopole magnetosphere

split-monopolar

pulsar collapse: closed field
~ lines absorbed

 Analyfics: fime-dependent force-free B-field in Schwarzschild

geom. R2Q0sin 6 2
B(b:_ e Bsa B, = (&) st
arTr T
2
s (1B
Ey = qua Jr = —2 (R_> cos
T 84

Q=Q(r—t+r(l—a?)In(ra®)) a=+/1-2M/r

*
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BH can only have open field lines:
split monopole magnetosphere

split-monopolar

pulsar collapse: closed field
~ lines absorbed

ar T

geom. 20 sin O 2
B¢:_RS - Bsa B, = (&> st

R\ ? cos 0B,
FEy = By, jr=—2 (_> cos

T «

Q=Q(r—t+r(l—a?)In(ra®)) a=+/1-2M/r

Take a relativistic object with monopolar B-field, rotate it
arbitrarily (slowly, a<< 1). The field will remain monopolar

s B
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-Split-monopole

S’m U’C"'IOHS (Lyutikov & McKinney, 2011) magnetosphere

- Slow balding
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Sim U’ClﬁOﬂS (Lyutikov & McKinney, 2011)
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Sim U’ClﬁOﬂS (Lyutikov & McKinney, 2011)
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Sim U’ClﬁOﬂS (Lyutikov & McKinney, 2011)

Expected for

no numerical resistivity
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Sim U’ClﬁOﬂS (Lyutikov & McKinney, 2011)

Fields are NOT anchored
In heavy crust

Expected for
no numerical resistivity
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-Split-monopole

S’m U’C"'IOHS (Lyutikov & McKinney, 2011) magnetosphere

- Slow balding
Fields are NOT anchored
In heavy crust - :
y Expected for With conducting
nonumerical resistivity | magnetosphere
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-Split-monopole

S’m U’C"'IOHS (Lyutikov & McKinney, 2011) magnetosphere

- Slow balding
Fields are NOT anchored

in heavy crust Expected for With conducting

no numerical resistivity magnetosphere
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-Split-monopole

S’m U’C"'IOHS (Lyutikov & McKinney, 2011) magnetosphere

- Slow balding
Fields are NOT anchored

in heavy crust Expected for With conducting

no numerical resistivity magnetosphere
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-Split-monopole
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Biggest problem: hard to predict resistive time
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The electromagnetic model of
short GRBs

e NS-NS merger generates B ~ 10'> G in the torus around BH (Rezzolla et al.)
e BH-torus launches a jet along the axis: prompt spike

o After ~ 100 msec torus collapse, isolated BH spins down electromagnetically,
oroduces equatorially-collimated flow, I, & sin® §: prompt tai

e Tail is more energetic, but de-boosted for axial observer
¢ Very late re-brightening of the remnant

classic short
GRB

\ 4

prompt
spike

accretion

Black hole

Orbital plane

30
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The electromagnetic model of
short GRBs

e NS-NS merger generates B ~ 10'> G in the torus around BH (Rezzolla et al.)
e BH-torus launches a jet along the axis: prompt spike

o After ~ 100 msec torus collapse, isolated BH spins down electromagnetically,
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e BH-torus launches a jet along the axis: prompt spike

o After ~ 100 msec torus collapse, isolated BH spins down electromagnetically,
oroduces equatorially-collimated flow, I, & sin® §: prompt tai

e Tail is more energetic, but de-boosted for axial observer
¢ Very late re-brightening of the remnant
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like a millisecond magnetar, PWN
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Millisecond magnetar as GRB central
engine

e Millisecond magnetars is a promising central source
e can produce clean (after few seconds), highly relativistic outflows
e can operate on long time scales without external feeding

* Magnetic dissipation/particle acceleration a la Crab flares can
be important (dominant¢) in GRBs
e Bursty, short fime scales from large radii Particle acceleraion
e fast efficient acceleration L. Instability of polar ckrrens
e non-thermal tail B

I1. Instability of shell currents —

A e ;

 Newly born BHs may work as b
millisecond magnetars - prompft tails s
IN short GRBs

% i " | T Wl Srs
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# Synchrotron emission

Lyutikov 2003
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