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Galilei to Cosimo II Medici

• It is impossible to obtain wages from a republic [...] without 
having duties attached. [...] so long as I am capable of lecturing 
and serving, no one in  the republic can exempt me from duty 
while I receive pay. I can hope to enjoy these benefits only from 
an absolute ruler.

Galilei, Opere x, 348 ff
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Magnetars (Thompson& Duncan)

• Magnetars are powered by 
dissipation of ~ 1015 G B-field

• B-field determines the available 
energy

• Questions: 
• How B-field is generated and 

evolves in the crust/core

• Properties of the crust (plastic 
or brittle deformations) - How 
crusts gates the flares

GRBMAG14	
  -­‐	
  The	
  magnetic	
  fields!	
  

3

EB ∼ 1047b215 erg
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Magnetars & GRBs
• Usov (1992) millisecond magnetar:  

GRB outflows are powered by 
rotational energy of the compact 
object, transported away by B-field

• More like Pulsar - PWN, just more 
powerful

    R ~ 10 km, B ~ 1015 G
• Formed in

• core collapse
• NS-NS merger
• AIC of a WD  

• spindown:
• Usov: LGRBs,~ 100 sec

• Plateaux in LGRBs (Fan+): ~ 104 sec

• prompt tails in SGRBs (Metzger+) ~ 
100 sec

τ ∼ 100 secP 2
msecb

−2
15

Ldipole ∼ B2R2c

�
RΩ

c

�4

= IΩΩ̇

Erot ∼ 5× 1052P−2
msec erg
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Not very high. Can explode a SN (LeBlanc & Wilson)? Probably not: SN 
explosions are not magnetically-driven (nu-driven), but  jet can be.
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GRBs: magnetically driven

• Long term activity: but nu-fluxes are 
short lived, ~ seconds

• neutrinos drive baryon contamination
• Colliding shells? - Really fine tuned

4

Gehrels et al. 2009

Flare @ 100- 10^5 sec in Short!
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GRBs: magnetically driven

• Long term activity: but nu-fluxes are 
short lived, ~ seconds

• neutrinos drive baryon contamination
• Colliding shells? - Really fine tuned

4

Gehrels et al. 2009

Flare @ 100- 10^5 sec in Short!

GRBs: magnetically driven, as PWNe

Which flare as well: constant
energy supply produces bursts
on sub-dynamical scales

Monday, January 20, 2014



Unipolar dynamo (Faraday wheel)

5

Ω

B-field 

Heavy conducting disk: NS or 
BH or accretion disk

Corona/magnetosphere with σ >> 1 σ =
B2

4πρc2
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Unipolar dynamo (Faraday wheel)

5

Ω

Γ  ~ √σ  >> 1

B-field 

Heavy conducting disk: NS or 
BH or accretion disk

Outflow speed is not related
to Keplerian  velocity

Corona/magnetosphere with σ >> 1 σ =
B2

4πρc2
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Interesting concept... does it work?
• Can σ >> 1 magnetosphere be realized?

• hot plasma (core collapse or NS-NS merger) - nu-driven contamination by 
baryons, but only for few seconds

• dissipation inside a star (later in the talk)
• GRB outflows must be clean - yes, it can. 

• How B-fields accelerate and collimate the flow 
• Do B-fields continue into the outflow?

• fireball model: no, but are recreated at matter-dominated shocks
• EM model (Lyutikov & Blandford 2003): yes, dissipation & acceleration is 

magnetic (not shocks)

•  Are there evidence of large-scale B-fields? - Polarization
• prompt (Coburn & Boggs 2003, others)

• optical afterglows (e.g., Mundell+ 2013, others)

• How B-field dissipates and accelerates particles

6
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B-field generation (need ~ 1015 G)
Core-collapse (Long GRBs)

• Compression, shear, turbulent, MRI 
and/or alpha-Omega dynamo 
operate during
 collapse and 
 core bounce

• Most MHD core-collapse 
simulations do not treat B-field 
generation, but start with huge 
magnetic fluxes. 

• Even non-magnetic explosions are 
not settled...

7

NS-NS mergers (Short GRBs)

• dynamo in the supermassive NS 
(Price & Rosswog)? 

• shear in the torus (Rezzola+)? 

• (Both saw amplification to > 1015 G)

Rezzolla et al 

Endeve +. 2013
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7

NS-NS mergers (Short GRBs)

• dynamo in the supermassive NS 
(Price & Rosswog)? 

• shear in the torus (Rezzola+)? 

• (Both saw amplification to > 1015 G)

Rezzolla et al 

Endeve +. 2013

Extremely challenging simulations
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Two types of Faraday wheel in GRBs

• Collapsar: AGN-like (BZ)

• B-fields are externally supplied 
and confined to a  BH 
(Blandford-Znajek)

• Confining walls (Lynden-Bell, 
Uzdensky)

• High-Gamma jet, superfast
• Perhaps a weak oblique 

collimation shock, but mostly 
continuous nozzle-like 
acceleration

8

• Millisecond magnetar: PWN-like

• B-fields are intrinsic
• Equatorially collimated initially

• Strong shock - stop!

• “Slowly” collimated by hoop 
stresses, sub-fast/super-Alfvenic 
plume (later nozzles out to super-
fast) 

L ∝ sin2 θ

Komissarov+,
Bucciantini+

BH

NS
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NS• In application to Long GRBs central engine, both types of model 
have two related problems in making a jet
• the sigma problem
• stability 
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The sigma problem

9

Consider a fixed cavity into which a central 
source injects energy and magnetic flux 
linearly with time. E.g. magnetar cavity is 
nearly constant on light travel time.

Stored B-flux ~ t, toroidal B-field ~ t, stored 
energy ~ B2 ~ t2 ???

Vin

B

Vin

B

VRS ~ c for σ >1

RS
Kennel&Coroniti: in σ > 1 , reverse shock 
would reach the central engine in light 
crossing time and model breaks down 

Rees & Gunn
Kennel & Coroniti

(Lyutikov cir. 2003)
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Possible resolutions

10

- Kennel & Coroniti: σ must change to << 1 on the way. 
(NB: this is a requirement of the self-consistency of the model, not a 
measured parameter within the model). 

- σ  remains high, but shock is not MHD (kinetic effects dominate, 
Lyubarsky). Unlikely in magnetars, too dense.

- Most of magnetic flux should be destroyed between the source 
and the boundary. The flow must become dissipative.

(Lyutikov cir. 2003)
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Need to destroy magnetic flux: 
reconnection.

11

O-point reconnection

X-point reconnection

Plasma will flow towards 
reconnection cites

(Lyutikov cir. 2003)
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Ideal flow in the bulk, dissipation 
on the axis & equator

12

2∇I2 = r2 sin2 θ∆Φ∇Φ

v =
E×B

B2
=

r sin θ(eφ ×∇Φ)
2I

- Vanishing charge and current 
densities in the bulk. 
- I=I0 - current on the axis

Φ =Φ 0

�
1− R

r

�
ln

tan θ
2

tan θ∗

2

Boundary

of the cavity

NS

separatrix !=!*

On the axis: toothpaste tube effect

flow lines- Current and charge distributions 
are related

J

(Lyutikov 2010)
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The stability problem
• How to kill flux: twisted B-field susceptible to kink instabilities
• First 3D relativistic MHD simulations of PWN, sigma >> 1

• Magnetic flux is destroyed. Sigma problem solved. 
• axially-symmetric simulations way overestimated the stability 

and Lorentz factor of the jets: 3D jets are slow and susceptible to 
instabilities (in BH-driven jets as well).

• But there is no jet left, only a plume.... Sigma problem became 
the no-jet problem (~OK for PWNe, not OK for GRBs)

13

Porth et al .2013

3D 2D
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And what to do?... Wait a second
• Wait a few seconds for neutrinos to 

do the hard part, explode the star. 
• B-field is amplified on a contracting  

proto-NS. Launch a slightly non-
spherical shock inside a star. 

• FS propagates in expanding 
envelope (v ~ r), with sharp density 
gradient - shock accelerates, makes 
a key hole (chimney)

14

Lyutikov 2010

Anisotropic driving Anisotropic r0

1 + cos2 θ

Lyutikov &
Komissarov, in prep

ρ ∝ r−7
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After the break-out the wind reaccelerates

• Force balance:                     (but: instabilities?) 
• Engine active for 100s secs: magnetars are good 

for late activity (no need for long accretion)
• not by powering the FS (little energy), but by internal 

dissipation in the long-lasting wind

• But magnetar emission is smooth? -  Peaks in the 
profile are signatures of the bursty dissipation in 
the wind, not the central engine activity (Lyutikov & 
Blandford 2003, Lyutikov 2006)

15

ν

wind re-
acceleration

Lyutikov 2003

Γ ∼ Γ0/ sin θ

Lyutikov 2003
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Bursty dissipation in the wind: 
Crab flares! 

16
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HEGRA 
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flare spectrum
break ~ 400 MeV

Tavani et al. 2010
Beuhler et al., 2011

Ep =
27

16π
η
mhc3

e2
= 236 ηMeV.

eEc = ηeBc =
4e4

9m2c3
B2γ2

Accelerating E-field < B-field 

Lyutikov ‘10, 
Komissarov & Lyutikov ’11
de Jager ‘98 (for shocks)

Recall: magnetar models of 
GRBs ~ models of PWNe

tflare � tdyn
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Accelerating E-field < B-field 

Lyutikov ‘10, 
Komissarov & Lyutikov ’11
de Jager ‘98 (for shocks)

Recall: magnetar models of 
GRBs ~ models of PWNe

• Highly magnetized, sigma >> 1, shocks are 
weak, not likely to be efficient 
accelerators.

• All the energy in the B-field: accelerate 
particles directly via reconnection.

• Paradigm change (?): some (most?) 
particles are accelerated by magnetic 
reconnection (and not shocks)

tflare � tdyn
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Reconnection: efficient, non-stationary

17

v E

New plasma physics regime: sigma >> 1 
plasma.

• What are dynamic and dissipative 
properties of such plasmas? - very different 
from laboratory and space plasmas.

• Pulsar winds, AGN & GRB jets and 
magnetospheres of BHs

• Alfven velocity is highly relativistic

• E-field is dynamically important

• charge density is important

γ ≥ 1
Reconnection in sigma >> 1 
plasma: outflow can be 
relativistic (Lyutikov & Uzdensky 
2002, Lyubarsky) 

Cerutti, Uzdensky+ 
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Reconnection can be bursty from smooth 
conditions

• Current sheet can be 
unstable to tearing

•

18

Lyutikov 2003, Komissarov+ 2007

Monday, January 20, 2014



Reconnection can be bursty from smooth 
conditions

• Current sheet can be 
unstable to tearing

•

18

Lyutikov 2003, Komissarov+ 2007

Monday, January 20, 2014



Reconnection can be bursty from smooth 
conditions

• Current sheet can be 
unstable to tearing

•

18

Lyutikov 2003, Komissarov+ 2007

plasmoids 
(ejected)
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• explosive dynamics on Alfven (light) time
• Starting with smooth conditions

• E ~ B0 (field outside), E>B with resistivity
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•probability of flare flux                             

•average flare flux is dominated by 
bright rare flares.

19

Time binned Monte Carlo

Mini-jets in Crab

Power-law from shot noise!

Clausen-Brown, Lyutikov 2012
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•probability of flare flux                             

•average flare flux is dominated by 
bright rare flares.

19

Time binned Monte Carlo

Mini-jets in Crab

Power-law from shot noise!

Clausen-Brown, Lyutikov 2012

• Crab flares are an example how 
magnetic reconnection
• can produce bursty radiation
• can accelerate particles up to 

the radiation reaction limit, that 
radiate efficiently (needed 
number of leptons produced by 
Crab in only 1 sec)
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Washington 2005 GRB conf
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10 100 1000
100

1000

Lyutikov 2006

Observed emission can be highly 
variable and with high efficiency 
(tapping into most of the proper 
volume)

Γeff = 2Γγrand

∆t ∼ c

R

1
8Γ2γ2

rand

γrand

Γ

- Spectrum is harder during flare (Burrows et al 2005) 
- Are flares becoming longer and softer as function of flare 
time?
- Can some  Shorts be “one spike Long”? (failed SN-type)
- Can explain optical -gamma correlations in 080319B? E.g. 
emitting “blobs” expand, killing both 

Also: Ghisellini et al. 2008,  Lazar et al. 2009, Giannios 
et al. 2009, Narayan & Kumar 2009

- Not fluid “turbulence”,

- RM & RT instabilities will produce 
vT<< c turbulence

γrand ∼
�

9/8 = 1.06

Turbulent reconnetion
(Lazarian & Vishniac)

- Relativistic reconnection: 
jets with
 (Lyutikov & Uzdenski 2004) 

γout ∼ σ � 1

Slide from Venice 2010 GRB meeting
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Particle acceleration in reconnection

• Shock acceleration: correct kinetic spectrum of particles follows 
from macroscopic jump conditions

• Reconnection - no simple scaling...
• But same result!

22

Sironi
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• Shock acceleration: correct kinetic spectrum of particles follows 
from macroscopic jump conditions
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• But same result!
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Sironi
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Long-lived engines in short GRBs 

23
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NS-NS merger as paradigm for Short GRBS

24
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GRB080503

- Active stage of NS-NS merger takes 10-100 msec, 
then collapse into BH

- Transient NS - 100 msec,  (NOT 100 sec!)

- Very little mass is ejected, drains out quickly

- Many short GRBs have long 100 sec tails, 
energetically comparable to the prompt spike.

-  Many GRBs have late time flares, 105 sec

100 sec tail has ~ 30 times more 
energy than the prompt spike

Monday, January 20, 2014



NS-NS merger as paradigm for Short GRBS
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GRB080503

- Active stage of NS-NS merger takes 10-100 msec, 
then collapse into BH

- Transient NS - 100 msec,  (NOT 100 sec!)

- Very little mass is ejected, drains out quickly

- Many short GRBs have long 100 sec tails, 
energetically comparable to the prompt spike.

-  Many GRBs have late time flares, 105 sec

100 sec tail has ~ 30 times more 
energy than the prompt spike

How to explain energetically dominant activity on ~ 
100 sec, while the engine lives 10-100 msec?
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Can merger of two NSs leave a NS? 
(millisecond magnetar)

• There is a 2MSun NS
• Need both MNS <1.2 MSun

• And throw out ~ 0.3 MSun

• And very stiff EoS

25

Metzger+, 

Ozel + 2010
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Can merger of two NSs leave a NS? 
(millisecond magnetar)

• There is a 2MSun NS
• Need both MNS <1.2 MSun

• And throw out ~ 0.3 MSun

• And very stiff EoS

25

The best determined masses (down to
10-4 MSun) are in NS-NS binaries, 
Mmin= 1.25 MSun

Metzger+, 

This cannot be the dominant
channel of NS-NS mergers and, thus,
of short GRBs.

Ozel + 2010

Monday, January 20, 2014



BHs part-timing as magnetars

Newly formed isolated spinning astrophysical 
black holes  can keep magnetic fields for times 
much longer than predicted by the “No hair” 
theorem, working as ~ millisecond magnetars

26
Monday, January 20, 2014



• Rotating NS - unipolar inductor 
- generate plasma out of vacuum
- open B-field lines to infinity

• Blandford & Znajek: BHs do the same

• Outside plasma: E.B =0 - frozen-in B-field
• If a BH keeps producing plasma, like a NS, B-

field cannot slide off: field lines that 
connected NS surface to infinity, has to 
connect horizon to infinity

27

Goldreich & Julian, 1969

• The “no hair” theorem is not applicable to collapse of rotating NSs: high 
plasma conductivity introduces topological constraint (frozen-in B-field). 

Conserved number: open magnetic flux: 

Can be measured at infinity: BH  hair

NB = eΦ∞/(πc�)
Φ∞ ≈ 2π2BNSR

3
NS/(PNSc)

J
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• Rotating NS - unipolar inductor 
- generate plasma out of vacuum
- open B-field lines to infinity

• Blandford & Znajek: BHs do the same

• Outside plasma: E.B =0 - frozen-in B-field
• If a BH keeps producing plasma, like a NS, B-

field cannot slide off: field lines that 
connected NS surface to infinity, has to 
connect horizon to infinity

27

Goldreich & Julian, 1969

• The “no hair” theorem is not applicable to collapse of rotating NSs: high 
plasma conductivity introduces topological constraint (frozen-in B-field). 

Conserved number: open magnetic flux: 

Can be measured at infinity: BH  hair

NB = eΦ∞/(πc�)
Φ∞ ≈ 2π2BNSR

3
NS/(PNSc)

J

Countable BH hair!
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BH can only have open field lines: 
split monopole magnetosphere

• Analytics: time-dependent force-free B-field in Schwarzschild 
geom.

28

Bφ = −R2
sΩ sin θ

αr
Bs, Br =

�
Rs

r

�2

Bs,

Eθ = Bφ, jr = −2

�
Rs

r

�2 cos θΩBs

α

Ω ≡ Ω
�
r − t+ r(1− α2) ln(rα2)

�
α =

�
1− 2M/r
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BH can only have open field lines: 
split monopole magnetosphere

• Analytics: time-dependent force-free B-field in Schwarzschild 
geom.

28

Bφ = −R2
sΩ sin θ

αr
Bs, Br =

�
Rs

r

�2

Bs,

Eθ = Bφ, jr = −2

�
Rs

r

�2 cos θΩBs

α

Ω ≡ Ω
�
r − t+ r(1− α2) ln(rα2)

�
α =

�
1− 2M/r

Take a relativistic object with monopolar B-field, rotate it 
arbitrarily (slowly, a<< 1). The field will remain monopolar

pulsar collapse: closed field 
lines absorbed

split-monopolar
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Simulations (Lyutikov & McKinney, 2011)

-Split-monopole 

magnetosphere 

- Slow balding

BH
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Simulations (Lyutikov & McKinney, 2011)

-Split-monopole 

magnetosphere 

- Slow balding

expected from
 “no hair”

With conducting
magnetosphere

Expected for 
no numerical resistivity

BH

Fields are NOT anchored
 in heavy crust

xx xx j

Fields are contained by the equatorial current,
just like in BZ, but this current is self-produced

Tearing  mode developing

Biggest problem: hard to predict resistive time
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•NS-NS merger generates B ~ 1015 G in  the torus around BH (Rezzolla et al.)

• BH-torus launches a jet along the axis: prompt spike

• After ~ 100 msec torus collapse, isolated BH  spins down  electromagnetically, 
produces equatorially-collimated flow,                   : prompt tail

• Tail is more energetic, but de-boosted for axial observer

•Very late re-brightening of the remnant

L ∝ sin2 θ

The electromagnetic model of 
short GRBs

30

Rezzolla et al 
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SN-less long GRBs
(GRB060505,060614)
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•NS-NS merger generates B ~ 1015 G in  the torus around BH (Rezzolla et al.)

• BH-torus launches a jet along the axis: prompt spike

• After ~ 100 msec torus collapse, isolated BH  spins down  electromagnetically, 
produces equatorially-collimated flow,                   : prompt tail

• Tail is more energetic, but de-boosted for axial observer

•Very late re-brightening of the remnant

L ∝ sin2 θ

The electromagnetic model of 
short GRBs

30

Rezzolla et al 

SN-less long GRBs
(GRB060505,060614)

L ∝ sin2 θ

like a millisecond magnetar, PWN
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Millisecond magnetar as GRB central 
engine

• Millisecond magnetars is a promising central source
• can produce clean (after few seconds), highly relativistic outflows
• can operate on long time scales without external feeding

• Magnetic dissipation/particle acceleration a la Crab flares can 
be important (dominant?) in GRBs
• Bursty, short time scales from large radii
• fast efficient acceleration 
• non-thermal tail

• Newly born BHs may work as 
millisecond magnetars - prompt tails 
in short GRBs

31

Lyutikov 2003
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