"CROSSOVER" GRBS

JILLIAN RASTINEJAD

Northwestern

Outline

- I. [Brief] Introduction
- II. Observations of short GRBs from massive star collapses
- III. Observations of long GRBs from merger events
- IV. Theories on the formation of long GRBs from merger events
- V. Observing strategies and outlook

1991 2000

The GRB Paradigm

Fermi Space Telescop

Launched June 2008

2000-2008

The GRB Paradigm + semantics!

Massive star - driven

Massive Star Deaths
+ Supernovae

New Crossover Events Emerging!

Short Gamma-ray Bursts

Long Gamma-ray Bursts

Massive Star Deaths -> Supernovae

"Short" GRBs from Collapsars

GRB 040924

Soderberg+06, Wiersma+08

GRB 200826A

Ahumada+21, Rossi+21, Zhang+21

T90 ~ 1.29 s

SN bump!

T90 ~ 1.14 s

Rossi+21

"Short" GRBs from Collapsars

GRB 040924

Soderberg+06, Wiersma+08

T90 ~ 1.29 s

SN bump!

GRB 200826A

Ahumada+21, Rossi+21, Zhang+21

T90 ~ 1.14 s

Are we just seeing the tail of the long GRB distribution?

"Short" GRBs from Collapsars

Are we just seeing the tail of the long GRB distribution?

Likely P_{SGRB} ~ 65%

Are these short GRB "interlopers" common?

Berger+14

The GRB Paradigm

Short Gamma-ray Bursts

Long Gamma-ray Bursts

Massive Star Deaths -> Supernovae

SN-less LGRB 060614

z=0.125, Duration ~102 s

20 - Jill 22 - SN1998bw at z = 0.125
* SN2002ap at z = 0.125
* SN2006aj at z = 0.125
26
0.01
0.10
1.00
10.00
Days after burst

In star-forming region

High dust extinction ruled out (Fynbo+06, Della Valle+06, Gal-Yam+06, Gehrels+06)

Spectrally-hard pulse complex lasting ~6s

Tail of softer extended emission (seen for ~25% of SGRBs; *Norris+10*)

EE-SGRBs and GRB 060614

Duration ~102 s

GRB 211211A: Exciting Ingredients

An ambiguous gamma-ray light curve

Spectrally-hard pulse complex lasting ~12s

Tail of softer extended emission (seen for ~25% of SGRBs; *Norris+10*)

Rastinejad+22

Observing a red excess following the **50-s duration GRB 211211A at 350 Mpc**

Observing a red excess following the **50-s duration GRB 211211A at 350 Mpc**

A Kilonova followng the 50-s duration GRB 211211A

Nearly the same K-band luminosity as AT2017gfo

A Kilonova followng the 50-s duration GRB 211211A

Nearly the same K-band luminosity as AT2017gfo

K-band fades on similar timescales to AT 2017gfo

Good fit to kilonova model of $M_{ej}{\sim}0.04~M_{\odot}$

Alternate explanations to a kilonova

What about a supernova?

Upper limit at 18 days rules out SN > 200 times fainter than 1998bw + any known GRB SN at z<0.5

Light curve poorly fit with Ni56 model

What about host association?

Higher-z scenarios limited by HST observations + UVOT detection

What about dust heating (e.g., Waxman+22)?

No signs of star formation at the location, X-ray+UV spectra shows no signs of dust

Data from Hjorth+12, Fong+22

Rastinejad+22

A second very nearby LGRB KN

GRB 230307A at 300 Mpc

A second very nearby LGRB KN

GRB 230307A at 300 Mpc

A SN-less LGRB in an atypical location

GRB 191019A at z=0.248

A SN-less LGRB in an atypical location

GRB 191019A at z=0.248

Optical AG detected but deep limits on a SN

Nuclear

Galaxy spectrum + fitting favor little ongoing SF

Dynamical formation of merger?

Summary of the Observed Events

Alternate explanations to a kilonova

Levan+, in prep

Are we just seeing the tail end of the sGRB distribution?

Fermi GRBs, Veres+23

Since Swift's Launch of GRBs found at z<0.3...

~5 LGRB KNe

8 LGRB SNe (Dainotti+22)

Significant fraction of nearby LGRBs

~9SGRBs detected (Fong+22)

~1/3 of mergers from LGRBs

Seems unlikely

What source(s) can explain merger-driven LGRBs?

pulse complex lasting ~12s

(seen for ~25% of SGRBs; *Norris+10*)

What source(s) can explain merger-driven LGRBs?

[sel	lected	M	od	e	S
				\sim	\sim

NSBH Merger:;

e.g. Rosswog+07, Desai+19

NSM with Magnetar Remnant:

e.g. Metzger+08, Gompertz+14, Gompertz+22

NSWD Merger

e.g. Fryer+99, Gillanders+23, Sun+23

NSM with Large Disk

e.g. Gottlieb+23

+ your favorite model!

Explanation

Late-time fall-back accretion from tidally-disrupted material could explain longer light curve

Can explain consistent EE/Xray timescales (~100s when system becomes optically-thin neutrinos)

Less compact merger could explain longer light curve

Outcome of standard picture of NSM GRBs

Challenges

Kilonova is not redder than 170817's

Bimodality of GRB distribution

How to produce lanthanides?

Bimodality of GRB distribution

Identifying Future Events: prompt X-ray Afterglow

Identifying Future Events: Minimum Variability Timescale

Veres+23

A path to distinguishing future merger-driven LGRBs?

Must be available in real-time

Northwestern

Well-localized GRB missions or mission coordination (e.g., the IPN) & wide-field afterglow searches are critical to localizing events

Rapid TOO programs are necessary to identify host distances, and find afterglows and kilonovae

Takeaway Points

- I. sGRBs from massive star collapses do not require a novel formation channel and likely do not compromise a significant fraction of detected sGRBs
- II. We have now found several candidate LGRBs from merger events. These events represent a new way to study compact object mergers and kilonovae.
- III. No leading theory can explain all observations of LGRBs from merger events. Further observations, including GWs, may elucidate the matter.
- IV. Rapid TOO programs and well-localized GRB missions are critical to expanding this sample of crossover events.

<u>Thanks to a large team</u>, including Wen-fai Fong, Andrew Levan, Ben Gompertz, Matt Nicholl, Gavin Lamb, Nial Tanvir, Daniele Malesani, Charlie Kilpatrick, Anya Nugent, Kerry Paterson, Genevieve Schroeder + many more!