

Long-lived engines in stripped envelope supernovae

Rodriguez, Nakar & Maoz

There seems to be a disagreement between the peak luminosity and the radioactive tail of stripped-envelope SNe:

- Sharon & Kushnir 20 find in observations a residual of non-radioactive energy
- Afsariardchi et al., 21 find that in numerical models the Ni cannot explain the peak luminosity
- Ertl et al., 20, Woosley et al., 21 and Sollerman, J. et al. find that explosion models do not produce enough ⁵⁶Ni to explain the peak luminosity

A sample of 54 regular stripped-envelope SNe

- Measure the ⁵⁶Ni mass from the tail
- Remove the ⁵⁶Ni contribution to the light using the Katz integral (Katz et al 2013)
- Measure the non-radioactive residual (Deposited E \times Deposition time)

A non-radioactive residual - $E\cdot t\sim 10^{54}-10^{55}~erg~s$ * A systematic error; cooling envelope emission; interaction; a central engine

*Needs our modeling of the γ -ray escape to be very wrong

$$E_{eng}t_{eng} \sim 10^{54} - 10^{55}erg \, s$$

$$10^{48} - 10^{49} \, erg < E_{eng} < 10^{51} - 10^{52} \, erg$$

$$10^{3} \, s < t_{eng} < 10^{6} \, s$$

If the engine is a magnetar: $B \approx 10^{15} G$; initial rotation period 1-100 ms

If the engine is accretion over a compact object: accreting $10^{-5} M_{\odot}$ is enough

The Katz integral

(Katz et al . 2013)

A homologous expanding sphere (r=vt) with radiation dominated internal energy

After some algebra

$$E(t) t - E(t_0) t_0 = \int_{t_0}^t (Q_{\text{dep}}(t') - L(t')) t' dt'.$$

$$E(t)\,t - E(t_0)\,t_0 = \int_{t_0}^t (Q_{\rm dep}(t') - L(t'))\,t'\,dt'.$$

$$t \gg t_{diff}$$
 radioactive Central

radioactive Central decay engine
$$Q_{
m dep} = Q_{
m nuc} + Q_{
m eng}$$

observable

$$LT_{
m -nuc} \equiv LT(t) - QT_{
m nuc}(t) pprox ET + QT_{
m eng}(t) \;\;; \;\;\; t \gg t_{
m diff}$$
 $\int_{t_0}^t L(t')\,t'\,dt' \int_{t_0}^t Q_{
m nuc}(t')\,t'\,dt' \;\;\; E(t_0)\,t_0 \int_{t_0}^t Q_{
m eng}(t')\,t'\,dt'$