Time-domain Astronomy

with SVOM

Maria Grazia Bernardini

INAF, Osservatorio Astronomico di Brera Laboratoire Univers et Particules de Montpellier (LUPM)

on behalf of the SVOM consortium

FEET 24, Bormio, 26-29 February 2024

The SVOM consortium

China (PI J.Wei)

- SECM Shanghai
- NSSC Beijing
- NAOC Beijing
- IHEP Beijing
- GuanXi University

Mexico

- UNAM (Colibri)

UK

- University of Leicester (MXT)

Germany

- MPE Garching (MXT)
- IAAT Tübingen (MXT)

France (PI B.Cordier)

- CNES Toulouse
- APC Paris
- CEA Saclay
- CPPM Marseille
- GEPI Meudon
- IAP Paris
- ICJLab Orsay
- IRAP Toulouse
- LAM Marseille
- LUPM Montpellier
- ObAS Strasbourg

The "Space-based multi-band astronomical Variable Objects Monitor" (SVOM) is a Sino-French mission dedicated to GRBs and transient sources, duration 3+2 years

Launch due on June 24, 2024

The Core program

Core program: GRBs and transients discovered by SVOM, 25% of time, with the highest priority

- Trigger and locate GRBs, alerts distributed in nearly real-time
- Slewing capabilities to have accurate location in ~5 min
 - Synergy with other space and ground based facilities
- Broadband characterization of the prompt emission
- Quick discovery and long-term follow-up of the afterglow

- Synergy among 7 instruments in space and on ground for a complete monitoring of GRBs and high-energy transients over 7 decades in energy and from the trigger up to the late afterglow

Orbit, pointing strategy and alerts dissemination

- Low Earth orbit (625 km, 96 min), 30° inclination
- Nearly anti-solar pointing
- Avoidance of the galactic plane and bright sources as Sco X-1
- Alerts transmitted to a network of 40 antennas.
 Goal: 65% of alerts within 30s
 - ⇒Favorable conditions for early follow-up from other facilities, especially large ground-based telescopes for redshift measurement (2/3 of cases)
 - **⇒Earth in the fov**: 65% duty cycle for ECLAIRs, 50% for MXT and VT

ECLAIRs 1 yr exposure map:

- 4 Ms on the galactic poles
- 500 ks on the galactic plane

MXT and VT pointings (1yr scenario, including 65 GRBs and 1 ToO/day)

The GRB prompt emission

GRM (3 GRDs):

- 4-120 keV
- Fov ~ 2 sr
- · Loc. < 12'
- 42-80 GRBs/yr, including 3-4 GRBs/yr at z>5

GWAC:

- 10 mounts with 4 cameras: ~5000 deg² (half of ECLAIRs fov)
- 500-800 nm
- m_{lim} ~ 16-17 (10s exposure)
- ECLAIRs+GRM measure the prompt spectrum over 3 decades in energy
- GWAC will add a constraint on the **associated prompt optical emission** in a good fraction of cases (16%).

- 15 keV 5 MeV
- Fov ~ 5.6 sr
- Loc. ~5-10 deg (3 GRDs)
- ~90 GRBs/yr
 - ECLAIRs sensitive to all classes of long GRBs
 - Sensitivity to short GRBs improved by combining ECLAIRs+GRM

Simulation of the multi-component spectrum of GRB 100724B

(Bernardini et al., 2017)

The GRB follow-up MXT:

Simulation of GRB 091020

- (Wei, Cordier et al., arXiv:1610.06892)
- 0.2-10 keV
- 64x64 arcmin²
- Loc. <13" within 5 min after the trigger for 50% of GRBs
- slew request: ~72 GRB/yr

- 400-1000 nm
- Loc. <1"

GWAC:

- ~5000 deg²
 - 500-800 nm

F-GFT (Colibri): | C-GFT:

- 1.3 m
- 400-1700 nm
- 1.2 m
- 400-950 nm
- MXT can detect and localize the X-ray afterglow in >90% of GRBs after a slew
- VT + ground segment will detect, localize and characterize the visible-NIR afterglow

Optical Light curves of long GRBs

(Wang et al., 2013)

The SVOM GRB sample

A unique sample of **30-40 GRB/yr** with:

- prompt emission over 3 decades (+ optical flux/limit: 16%)
- X-ray and V/NIR afterglow
- redshift

	Swift	Fermi	SVOM
Prompt	Poor	Excellent 8 keV -100 GeV	Very Good 4 keV - 5 MeV
Afterglow	Excellent	> 100 MeV for LAT GRBs	Excellent
Redshift	~1/3	Low fraction	~2/3

Physical mechanisms at work in GRBs

- Nature of GRB progenitors and central engines
- Acceleration & composition of the relativistic ejecta

Diversity of GRBs: event continuum following the collapse of a massive star

- Low-luminosity GRBs / X-ray rich GRBs / X-ray Flashes and their afterglow
- GRB/SN connection

Short GRBs and the merger model

- GW association

SVOM as an open observatory

*The general program (GP): Observation proposals being awarded by a TAC (a SVOM coloneds to be part of your proposal) for astrophysical targets, mostly compliant with the satellite attitude law (form 10% to 50% of

ToO

ToO-NOM

ToO-EX

Latency Frequency

1-5/day

1/month

<48hrs

<12hrs

Duration

1 orbit or more

7-14 orbits

~14 orbits

time can be spent on low galactic latitude sources). It can include ToOs.

▼ Target of Opportunity (ToO) program:

• **ToO-NOM** - nominal ToO which covers the basic needs for efficient transient follow-up alerts (GRB revisit, known source flaring, new transient).

- **ToO-EX** exceptional ToO which covers the needs for a fast ToO-NOM in case of an exceptional astrophysical event we want to observe rapidly.
- **ToO-MM** ToO-EX dedicated to EM counterpart search in response to a multimessenger alert (unknown position, tiling of large portion of the sky).

SVOM data policy

Core Program:

- Real-time VHF scientific products generated under the supervision of the Burst Advocate are public as soon as they are available (similar to Fermi or Swift)
- · All the scientific products are public six month after the data production

General Program:

- All the SVOM data will be managed by the Responsible Co-I
- One year of proprietary period before the scientific products become public

Frogram (still under discussion):

- Triggered by SVOM Co-Is: scientific products relevant to perform follow-up observations will be public as soon as possible. Other scientific products to be released will be decided case by case
- Triggered by non SVOM Co-Is: all the scientific products will be public as soon as they are available

Exploring the Transient sky with SVOM

Core Program (GRBs):

 Multi-wavelength observations of prompt and afterglow emission (in many cases with redshift) that complement the observations at other wavelengths (e.g. HE/VHE with CTA)

General Program:

 Multi-wavelength observations of transients or flaring sources (AGNs, blazars, SNe, galactic transients, TDEs, ecc..)

Frogram:

- Search for X-ray and optical counterparts of external triggers
- Joint searches for counterparts of MM triggers, and validation of candidates at other wavelengths

MM astronomy with SVOM

ECLAIRs/GRM/GWAC

→ Large fov, independent trigger or search in the fov

MXT/VT

- → Slew following the alert ToO-MM
- → Tiling strategy if the error box is larger than 1 deg²

C-GFT/F-GFT

- → Rapid response, galaxy targeting search within the skymap
- → Require accurate localization (<30'), photometric follow-up to characterize the counterpart

MXT vs. XRT tiling

Typical scenario: 5 tiles/orbit – 15 orbits (~ 1 day)

SVOM response to GW 170817

Simulation of the prompt emission of GRB170817A

(Simulations by S.Schanne, MG.Bernardini and F.Piron)

If not in the ECLAIRs or GRM fov:

- LVC alert received by the FSC, ToO-MM sent for tiling observations with MXT + GFT observations of nearby galaxies
 - →Thanks to its NIR channel, Colibri would have certainly detect the kilonova

If in the ECLAIRs or GRM fov:

- Up to 35° off axis: ECLAIRs triggers + alert is sent to the ground + slew is requested
 - →MXT and VT follow-up. Kilonova easily detectable by the VT
- Up to **50**° **off-axis**: GRM triggers + alert is sent to the ground (with rough localization)

Simulation of the kilonova AT2017gfo

(Simulations by A.Klötz)

SVOM is already operating!

O1: 1 GW alert followed, 1 GCN issued

O2: 8 GW alerts followed, 9 GCNs issued

O3: 17 GW alerts followed, 31 GCNs issued

(Credit D.Turpin, see also D.Turpin et al., 2019)

Mini GWAC

GWAC + 30 and

60 cm telescopes

+ monitoring of flaring stars, novae, FRBs and GRBs (Xin+21, Wang+21, Wang+20, Xin+20, ...)

