Magnetars: neutron stars with huge magnetic storms

Nanda Rea

Institute of Space Sciences CSIC-IEEC, Barcelona

Neutron star formation & Magnetars

Magnetars are neutron stars with the highest magnetic fields

Those huge fields are believed to form either via alpha-dynamo soon after birth or as fossil fields from a very magnetic progenitor

Magnetic Field Tree

- 0.6 G The Earth magnetic field measured at the North pole
- 100 G A common hand-held magnet like those used to stick papers on a refrigerator
- 10⁷ G The strongest man-made field ever achieved, made using focussed explosive charges, lasting only 4-8 s
- 10¹² G Typical neutron star magnetic fields
- 4.4x10¹³ G Electron critical magnetic field

$$B_{critic} = \frac{m_e^2 c^3}{e\hbar} = 4.414 \times 10^{13} Gauss$$

10¹⁴-10¹⁵ G: Magnetars overtake this limit...

Unique places to study the physics of plasma embedded in very high magnetic and gravitational fields

How do we measure neutron stars' magnetic fields

Isolated Neutron Stars: P-Pdot diagram

$$P\dot{P} = \left(\frac{8\pi^2 R_{ns}^{\ 6}}{3c^3 I}B_0^2\sin^2\alpha\right)$$

Critical Electron Quantum B-field

How magnetars were/are discovered

Short x/gamma-ray bursts (initially though to be GRBs)

Bright X-ray pulsars with 0.5-10keV spectra modelled by a thermal plus a non-thermal component

Bright X-ray transients!

Soft Gamma Repeaters

Transients

No more distinction between Anomalous X-ray Pulsars, Soft Gamma Repeaters, and transient magnetars: all showing all kind of magnetars-like activity.

Magnetars general properties

- bright X-ray pulsars $Lx \sim 10^{33}$ - 10^{36} erg/s
- strong soft and hard X-ray emission
- short X/gamma-ray flares and long outbursts
- pulsed fractions ranging from ~2-80 %
- rotating with periods of ~2-12s
- period derivatives of ~ 10^{-13} - 10^{-11} s/s
- magnetic fields of ~10¹⁴-10¹⁵ Gauss
- glitches and timing noise
- faint infrared/optical emission (K~20; sometimes pulsed and transient)

(see Woods & Thompson 2006, Mereghetti 2008, Rea & Esposito 2011 for a review)

Magnetar outbursts

Magnetar flares

Short bursts

- the most common
- they last ~0.1s
- peak ~10⁴¹ ergs/s
- \bullet soft $\gamma\text{-rays}$ thermal spectra

Intermediate bursts

- they last 1-40 s
- peak ~10⁴¹-10⁴³ ergs/s
- abrupt on-set
- usually soft γ-rays thermal spectra

<u>Giant Flares</u>

 their output of high energy is exceeded only by blazars and GRBs

• peak energy > 3x10⁴⁴ ergs/s

 <1 s initial peak with a hard spectrum which rapidly become softer in the burst tail that can last > 500s, showing the NS spin pulsations, and quasi periodic oscillations (QPOs)

200

Nanda Rea CSIC-IEEC

Time (s)

100

The Earth responding to magnetar flares

(Mandea & Balasis 2006, Geophysical Journal)

Why magnetars?

Can they be rotational powered as normal pulsars?

NO. X-ray emission overtaking their rotational budget.

Can they be accretion powered by a low-mass companion star?

(Mereghetti, Israel & Stella 1998)

NO. Very stringent limits on possible companions.

Why magnetars?

Another energy resevoir was needed

How magnetar persistent emission is believed to work?

- Magnetars have magnetic fields twisted up, inside and outside the star.
- The surface of a young magnetar is so hot that it glows brightly in X-rays.
- Magnetar magnetospheres are filled by charged particles trapped in the twisted field lines, interacting with the surface thermal emission through resonant cyclotron scattering.

(Thompson, Lyutikov & Kulkarni 2002; Fernandez & Thompson 2008; Nobili, Turolla & Zane 2008a,b; Rea et al. 2008, Zane et al. 2009)

(Thompson & Duncan 1992; 1993; 1995;1996)

How magnetar outbursts and flares are believed to work?

 The twisted magnetic geometry of a magnetar, at intervals, it can twist up, and stresses build up in the neutron star crust causing outbursts, glitches, flares, and all sort of instabilities.

(Thompson, Lyutikov & Kulkarni 2002, ApJ 574, 332)

- 1. A magnetar has necessarily a high dipole field !
- 2. Normal pulsars and magnetars are two distinct classes of neutron stars

- 1. A magnetar has necessarily a high dipole field !
- 2. Normal pulsars and magnetars are two distinct classes of neutron stars

These turned out not to be totally true....

1. Magnetars can be radio pulsars during outbursts

XTE 1810-197:showed radio pulsed emission during its outburst... the discovery of two other "radio-pulsar" magnetars followed soon...

53900

Modified Julian Day

54000

53800

(Camilo et al. 2006, Nature 442, 892; Camilo et al. 2007, ApJ 666, L93; Levin et al. 2010, ApJ 721, L33)

Nanda Rea CSIC-IEEC

54100

1. Magnetars can be radio pulsars during outbursts

(Rea et al. 2012, ApJ Letters, 748, L12, and highlighted in Science as Editors' choice)

2. A "normal" X-ray pulsar showed magnetar activity...

PSR1846-0258: an energetic allegedly rotation-powered pulsar (with a high-B though...) showed SGR-like bursts

- P = 0.3 s
- B = 5x10¹³ Gauss

quiescence

• $L_{spin-down} = 200Lx \sim 8x10^{36} \text{ erg/s}$

Nanda Rea CSIC-IEEC

(Gavriil et al. 2008, Science, 319, 1802; Kumar & Safi-Harb, ApJ 678, L43)

outburst

3. A magnetar was discovered having a low B-field...

SGR 0418+5729: discovered as a typical transient magnetar...

(Esposito et al. 2010, MNRAS 405, 1787; Rea et al. 2010, Science, 330, 944)

3. A magnetar was discovered having a low B-field...

SGR 0418+5729: but having a low magnetic field!

Magnetic field was: B < 7.5×10^{12} G

(Rea et al. 2010, Science, 330, 944)

3. A magnetar was discovered having a low B-field...

...now we have a possible B-field measurement for SGR 0418+5729, and a new low-B magnetar (Swift 1822.3-1606)! (Rea et al. 2012, ApJ, 754, 26; see also Sholtz et al. 2012)

(Rea et al. 2012, in prep)

Yes!

Assuming that the crustal toroidal component of the B-field can be >100 times larger than the dipolar B-field we are measuring.

Magnetars can be then hidden inside many apparently quiet pulsars!

(Turolla et al. 2012, ApJ 740, 105; Rea et al. 2012, in prep)

Which can be the low-B magneto-thermal evolution?

Normal Pulsar

Intial conditions: B_{dip}~10¹³ G (white lines) Bint~ 10¹⁴ G (colors)

> Young Active Magnetar Intial conditions: B_{dip}~10¹⁵ G (white lines) Bint~ 10¹⁶ G (colors)

Nanda Rea CSIC-IEEC

Old Weak Magnetar Initial conditions: B_{dip}~10¹⁴ G (white lines) $B_{int} \sim 10^{15} \text{ G} (colors)$

Which are the broader consequences of these discoveries?

** SN explosions

A large number of strong-B neutron stars call for a key ingredient of the NS formation model: an extreme internal B should then be a common place rather than an exception

** GW radiation from newly born magnetars

The GW background radiation produced by the formation of highly magnetic neutron stars is probably underestimated given the recent results.

** Gamma-ray bursts

If a large fraction of the formed neutron stars have a strong Bfield, hence GRBs due to the formation of such stars are way more frequent than predicted.

** Massive Stars

If strong-B neutron stars are formed by the explosion of highly magnetic stars, there should be many more of such stars than predicted thus far

Conclusions

Magnetars are intriguing objects, and unique laboratories to test our knowledge on the physics of matter under extreme gravitational and magnetic fields.

We finally understood that behind the powerful magnetar emission there is not just a magnetic strength, but there are other important parameters: i.e. field geometry and evolution.

Many normal pulsars might be hiding a magnetar inside, hence magnetars might be the "typical" neutron stars rather than an exception, with all the due consequences.

Conclusions

Nanda Rea CSIC-IEEC