Magnetars: neutron stars with huge magnetic storms

Nanda Rea
Institute of Space Sciences, CSIC-IEEC, Barcelona
Magnetars are neutron stars with the highest magnetic fields

Those huge fields are believed to form either via alpha-dynamo soon after birth or as fossil fields from a very magnetic progenitor.
Magnetic Field Tree

0.6 G – The Earth magnetic field measured at the North pole

100 G – A common hand-held magnet like those used to stick papers on a refrigerator

10^7 G – The strongest man-made field ever achieved, made using focussed explosive charges, lasting only 4-8 s

10^{12} G – Typical neutron star magnetic fields

4.4×10^{13} G – Electron critical magnetic field

$10^{14} - 10^{15}$ G: Magnetars overtake this limit...

Unique places to study the physics of plasma embedded in very high magnetic and gravitational fields
How do we measure neutron stars’ magnetic fields

\[
\dot{E}_{\text{rot}} = -\frac{2}{3c^3} |\dot{m}|^2 = -\frac{2B^2 R^6 \Omega^4 \sin^2 \alpha}{3c^3}
\]

\[
P \dot{P} = \left(\frac{8 \pi^2 R_{ns}^6}{3c^3 I} \right) B_0^2 \sin^2 \alpha
\]
Isolated Neutron Stars: P-Pdot diagram

\[P \dot{P} = \left(\frac{8 \pi^2 R_{ns}^6}{3 c^3 I} \right) B_0^2 \sin^2 \alpha \]

Critical Electron Quantum B-field

\[B_{\text{critic}} = \frac{m_e^2 c^3}{\varepsilon \hbar} = 4.414 \times 10^{13} \text{ Gauss} \]
How magnetars were/are discovered

Short x/gamma-ray bursts (initially though to be GRBs)

Bright X-ray pulsars with 0.5-10keV spectra modelled by a thermal plus a non-thermal component

Bright X-ray transients!

No more distinction between Anomalous X-ray Pulsars, Soft Gamma Repeaters, and transient magnetars: all showing all kind of magnetars-like activity.
Magnetars general properties

- bright X-ray pulsars $L_x \sim 10^{33}-10^{36}$ erg/s
- strong soft and hard X-ray emission
- short X/gamma-ray flares and long outbursts
- pulsed fractions ranging from ~ 2-80 %
- rotating with periods of ~ 2-12s
- period derivatives of $\sim 10^{-13}$-10^{-11} s/s
- magnetic fields of $\sim 10^{14}$-10^{15} Gauss
- glitches and timing noise
- faint infrared/optical emission ($K\sim 20$; sometimes pulsed and transient)

(see Woods & Thompson 2006, Mereghetti 2008, Rea & Esposito 2011 for a review)
Magnetar outbursts

(updated from Rea & Esposito 2011)
Magnetar flares

Short bursts
• the most common
• they last ~0.1s
• peak ~10^{41} ergs/s
• soft γ-rays thermal spectra

Intermediate bursts
• they last 1-40 s
• peak ~10^{41}-10^{43} ergs/s
• abrupt on-set
• usually soft γ-rays thermal spectra

Giant Flares
• their output of high energy is exceeded only by blazars and GRBs
• peak energy > 3×10^{44} ergs/s
• <1 s initial peak with a hard spectrum which rapidly become softer in the burst tail that can last > 500s, showing the NS spin pulsations, and quasi periodic oscillations (QPOs)
The Earth responding to magnetar flares

(Manda & Balasis 2006, Geophysical Journal)

(Palmer et al. 2005)
Why magnetars?

Can they be rotational powered as normal pulsars?

NO. X-ray emission overtaking their rotational budget.
Why magnetars?

Can they be accretion powered by a low-mass companion star?

NO. Very stringent limits on possible companions.

(Mereghetti, Israel & Stella 1998)
Why magnetars?

Another energy reservoir was needed
How magnetar persistent emission is believed to work?

- Magnetars have magnetic fields twisted up, inside and outside the star.
- The surface of a young magnetar is so hot that it glows brightly in X-rays.
- Magnetar magnetospheres are filled by charged particles trapped in the twisted field lines, interacting with the surface thermal emission through resonant cyclotron scattering.

\[\sigma_{\text{RCS}} \sim \left(\frac{R_e}{r_e} \right) \sigma_T \sim 10^3 \sigma_T \]

\[R_L \sim 8R_{NS} \left(\frac{B_{NS}}{B_{\text{crit}}} \right)^{1/3} \left(\frac{1 \text{ keV}}{\hbar \omega_B} \right)^{1/3} \]

(Thompson, Lyutikov & Kulkarni 2002; Fernandez & Thompson 2008; Nobili, Turolla & Zane 2008a,b; Rea et al. 2008, Zane et al. 2009)
How magnetar outbursts and flares are believed to work?

- The twisted magnetic geometry of a magnetar, at intervals, it can twist up, and stresses build up in the neutron star crust causing outbursts, glitches, flares, and all sort of instabilities.

1. A magnetar has necessarily a high dipole field!

2. Normal pulsars and magnetars are two distinct classes of neutron stars
What we believed until recently...

1. A magnetar has necessarily a high dipole field!

2. Normal pulsars and magnetars are two distinct classes of neutron stars

These turned out not to be totally true....
1. Magnetars can be radio pulsars during outbursts

XTE 1810-197: showed radio pulsed emission during its outburst... the discovery of two other “radio-pulsar” magnetars followed soon...

1. Magnetars can be radio pulsars during outbursts

2. A “normal” X-ray pulsar showed magnetar activity...

PSR1846-0258: an energetic allegedly rotation-powered pulsar (with a high-B though...) showed SGR-like bursts

- \(P = 0.3 \) s
- \(B = 5 \times 10^{13} \) Gauss
- \(L_{\text{spin-down}} = 200L_x \sim 8 \times 10^{36} \) erg/s

3. A magnetar was discovered having a low B-field...

SGR 0418+5729: discovered as a typical transient magnetar...

(Rea et al. 2010, Science, 330, 944)

Nanda Rea CSIC-IEEC
3. A magnetar was discovered having a low B-field...

SGR 0418+5729: but having a low magnetic field!

Magnetic field was:

\[B < 7.5 \times 10^{12} \text{ G} \]

- \(P = 9.1 \text{s} \)
- \(P < 6 \times 10^{-15} \text{ s/s} \)

\(\) (Rea et al. 2010, Science, 330, 944)
3. A magnetar was discovered having a low B-field...

...now we have a possible B-field measurement for SGR 0418+5729, and a new low-B magnetar (Swift 1822.3-1606)! (Rea et al. 2012, ApJ, 754, 26; see also Sholtz et al. 2012)

SGR 0418+5729 magnetic field is: B ~
(see Gianluca Israel’s talk!!)

(Rea et al. 2012, in prep)
Is this still compatible with the magnetar model?

Yes!

Assuming that the crustal toroidal component of the B-field can be >100 times larger than the dipolar B-field we are measuring.

Magnetars can be then hidden inside many apparently quiet pulsars!

Which can be the low-B magneto-thermal evolution?

Old Weak Magnetar
Initial conditions:
- $B_{\text{dip}} \approx 10^{14}$ G (white lines)
- $B_{\text{int}} \approx 10^{15}$ G (colors)

Normal Pulsar
Initial conditions:
- $B_{\text{dip}} \approx 10^{13}$ G (white lines)
- $B_{\text{int}} \approx 10^{14}$ G (colors)

Young Active Magnetar
Initial conditions:
- $B_{\text{dip}} \approx 10^{15}$ G (white lines)
- $B_{\text{int}} \approx 10^{16}$ G (colors)

Simulations: Courtesy of Jose’ Pons
** SN explosions
A large number of strong-B neutron stars call for a key ingredient of the NS formation model: an extreme internal B should then be a common place rather than an exception

** GW radiation from newly born magnetars
The GW background radiation produced by the formation of highly magnetic neutron stars is probably underestimated given the recent results.

** Gamma-ray bursts
If a large fraction of the formed neutron stars have a strong B-field, hence GRBs due to the formation of such stars are way more frequent than predicted.

** Massive Stars
If strong-B neutron stars are formed by the explosion of highly magnetic stars, there should be many more of such stars than predicted thus far

Nanda Rea CSIC-IEEC
Magnetars are intriguing objects, and unique laboratories to test our knowledge on the physics of matter under extreme gravitational and magnetic fields.

We finally understood that behind the powerful magnetar emission there is not just a magnetic strength, but there are other important parameters: i.e. field geometry and evolution.

Many normal pulsars might be hiding a magnetar inside, hence magnetars might be the “typical” neutron stars rather than an exception, with all the due consequences.
Conclusions

Too B or not too B?