X-ray Properties of the Starburst-Driven Outflow in NGC 253

<u>Ikuyuki Mitsuishi¹,</u> Noriko Y. Yamasaki², Yoh Takei² ¹ Tokyo Metropolitan University, ² ISAS/JAXA

X-ray Astronomy: towards the next 50 years!, 2012, Milano, <u>Ikuyuki Mitsuishi (mitsuisi@phys.se.tmu.ac.jp)</u>

Multi-Wavelength View of NGC 253

Spectral Fitting

Abundance Patterns in NGC 253

Mitsuishi et al. PASJ submitted

X-ray Astronomy: towards the next 50 years!, 2012, Milano, Ikuyuki Mitsuishi (mitsuisi@phys.se.tmu.ac.jp)

4

Abundance Patterns in Starburst Galaxies

Mitsuishi et al. PASJ submitted

• universal mechanism ??

Hardness ratio and Surface brightness of ISM Mitsuishi et al. PASJ submitted

6

X-ray Astronomy: towards the next 50 years!, 2012, Milano, Ikuyuki Mitsuishi (mitsuisi@phys.se.tmu.ac.jp) 7

Gas Dynamics in NGC 253

Mitsuishi et al. PASJ submitted

polytropic relation between density and temperature $PV^{\gamma} = const \rightarrow T\rho^{1-\gamma} = const$

8

Possibility of the Outflow toward the Intergalactic Space

Motivation:

free expansion in the halo
flat temperature in the halo
no effective cooling process
needs a certain level of velocity
velocity constraint

Assumptions:

(1) hot gas in the halo moves along with the minor axis with constant V_{bulk} (2) only radiative cooling as a cooling process

(3) adopt density profile obtained from the surface brightness

Constraint on the velocity of the outflow in the halo

X-ray Astronomy: towards the next 50 years!, 2012 Milano, Ikuyuki Mitsuishi (mitsuisi@phys.se.tmu.ac.jp)

Summary

X-ray observations for NGC 253 to verify the starburst-driven outflow scenario

- nuclear region (=most intense starburst region)
 hard X-ray originates from starburst activity
 several 1000 type-II supernovae
 supply from the central starburst activity (Mitsuishi et al. 2011 ApJL)
- outer regions (superwind, disk and halo)
 same abundance patterns
 type-II contaminated abundance patterns
 same origin as the inner region
 - same mechanism in starburst galaxies ?
 - constraint gas dynamics in the disk and the halo
 - different behavior of SB and HR
 - adiabatic expansion in the disk
 - ► free expansion in the halo (Mitsuishi et al. PASJ submitted)

