Shocks and cold fronts in galaxy clusters

Maxim Markevitch (NASA GSFC)

Milan, October 2012

Cluster precision cosmology

Cluster precision cosmology

only as precise as our knowledge of cluster physics

±10% mass error

Cluster physics from shock fronts

1E0657–56: bullet and shock front

 $M = 3.0 \pm 0.4$, shock v = 4700 km/s

1E0657 shock: electron-proton equilibration timescale

igodol

(or electrons are heated right at shock)

Shocks and relativistic electrons in clusters

0

0

 \bigcirc

 \bigcirc

 $\left(1\right)$

Westerbork 350 MHz contours (Brown & Rudnick 10)

 \bigcirc

ROSAT X-ray image

1 Mpc

 \bigcirc

1 Mpc

Coma shock front

ROSAT brightness profile across X-ray edge

Coma shock front

A521 shock

Chandra X-ray image

Brunetti et al. 08

Fermi I acceleration at cluster shocks?

A754:

X-ray shock with $M = 1.6 \pm 0.15 \rightarrow \text{post-shock radio slope } \alpha = 2.3 (2.0-2.8)$ (assuming Fermi-I acceleration); observed: $\alpha \frac{1.4}{330} = 2.0$ (Macario et al. 10)

A521:

Radio spectral slope $\rightarrow M = 2.3$ observed in X-rays: $M = 2.1 \stackrel{+0.5}{_{-0.9}}$ (Bourdin et al. 12)

 First direct evidence of cosmic ray acceleration by cluster shocks (more likely, re-acceleration)

Cold fronts

Chandra T map

Shock and cold front profiles in 1E0657

Cold fronts — diffusion and conduction barriers

Width of density jump d < 4 kpc $< \lambda_e$ (Coulomb) \approx 10–15 kpc \rightarrow diffusion across front is suppressed (magnetic barriers)

Vikhlinin et al. 01, M & V 07

Cold fronts in cool cores

Long-lived "sloshing" from past disturbances (Ascasibar & Markevitch 06)

Cool dense gas sloshing in the central potential minimum

Core sloshing: gas *T* maps

ZuHone 11 (FLASH, resolution 2 kpc, no magnetic field)

Core sloshing: *B* **suppresses instabilities**

ZuHone 11 (FLASH, MHD, resolution 2 kpc)

Core sloshing: turbulence

z projection

ZuHone 12 (FLASH, MHD, resolution 1 kpc)

Core sloshing: synchrotron radio emission

contours: radio brightness

T, keV

ZuHone 12

Radio minihalos in cluster cores

Mazzotta & Giacintucci 08; Giacintucci 12

• Simulation reproduces minihalo geometry and radio spectrum

Next 50 years?

Cluster dynamics

Chandra X-ray images

• Need calorimeter with *Chandra* angular resolution

Relativistic matter in clusters

