High redshift blazars:

Gabriele Ghisellini

INAF-Osservatorio di Brera

with

A. Celotti, R. Della Ceca,
L. Foschini, G. Ghirlanda,
F. Haardt, L. Maraschi,
G. Pareschi, T. Sbarrato,
G. Tagliaferri, F. Tavecchio,
M. Volonteri
What is a blazar?

A jetted AGN, whose jet is relativistic ($\Gamma \sim 10$) and is “pointing at us”.
To be more quantitative:

$$\Theta_{\text{view}} < 1/\Gamma$$

→ For each blazar, $2\Gamma^2$ radio-loud AGN pointing elsewhere: FR I and FRII radio-galaxies
Goals

- Relativistic jets as the most efficient engines
- Black holes in radio loud sources are big
- Blazars can be seen at high redshifts
- Especially in hard X-rays
- Search of heavy black holes in the young Universe
The “blazar sequence”

Log νL_ν [erg s$^{-1}$]

Log ν [Hz]

FSRQs

BL Lacs

BAT

Integral

Fossati et al. 1998; Donato et al. 2001
2 years – 4σ Ackermann+ 2011

175 BL Lacs
310 FSRQ
with z

Energy index α_γ

L_γ [erg s$^{-1}$]
2 years – 4σ Ackermann+ 2011

Energy index α_γ

L_γ [erg s$^{-1}$]
SDSS+1LAC

Do we really need to divide blazars?

Sbarrato+ 2011
Fermi big blazars: powerful, with emission lines
Low energy synchro peak: leave the disk naked!
Torus with WISE:

Calderone+ 2012

300 K 1500 K

Low energy synchro peak: leave the disk naked!
$M=2 \times 10^9$

Low energy synchro peak: leave the disk naked!
torus
disk
X-ray corona

synchro
Small B

0227-369
$z = 2.115$

EC

$\log \nu F_\nu$ [erg cm$^{-2}$s$^{-1}$]

$\log \nu L_\nu$ [erg s$^{-1}$]
The most luminous blazars

BAT and INTEGRAL even bigger blazars: z up to ~ 4
(compare with Fermi: $z < 3$)
jet power and accretion luminosity

\[P_r = \text{radiation} \sim \frac{L_{\text{obs}}}{\Gamma^2} \]

\[P_e = \text{relat. electrons} \]

\[P_p = \text{protons} \]

\[P_B = \text{B-field} \]

\[P_{\text{jet}} = P_e + P_p + P_B \]

Shakura-Sunyaev disk: \(L_d \)

\(~10^{17}\text{ cm}\)
$P_{\text{min}} = 2P_r \sim 2L_{\text{obs}} / \Gamma^2$ "model independent"

$P_{\text{jet, min}} = L_d$

All sources with emission lines

$2P_r$ is the minimum P_{jet}
If one proton per emitting electron

$P_j \sim M c^2 > L_d \rightarrow \text{next talk!}$
Pause

1. \(P_{\text{jet}} \sim M c^2 \), even larger than \(L_d \)
2. For all \(M/\dot{M}_{\text{Edd}} \)
3. BL Lacs → ADAF FSRQs → SS
4. \(L_{\text{BLR}}/L_{\text{Edd}} \) divides BL Lacs from FSRQs
5. Matter, not magnetic, dominated
The second most distant blazar: $z=5.3$
B2 1023+01 = SDSS J1026+254

One of the 31 AGNs with radio-loudness $R>100$
and $z>4$ in the SDSS (DR7)

Strong radio (\sim200 mJy @ 1.4 GHz)

Large radio-loudness ($R\sim5000$)

GROND (simult. photometry in 7 opt-IR filters)
$1026+25 \ z=5.3$

$\Gamma=14$

$\Theta_v=3^\circ$

Sbarrato+ 2012
$1 = 2\Gamma^2 \sim 200 - 500$
radio-loud = 450 # blazars...

\[\log \Phi(M > 10^9 M_\odot) \text{ [Gpc}^{-3}\text{]} \]

Radio-quiet

Radio-loud

\[\log L_{\text{opt}} > 47 \text{ Hopkins 07} \]

\[\log L_x > 47.2 \]

B2 1023

4 blazars

0906

Ajello+ 2009; Volonteri+ 2011...
4 blazars
Conclusions

- BL Lac - FSRQ divide at $L_{\text{disc}}/L_{\text{Edd}} \sim 10^{-2}$
- Jets are powerful, matter dominated
- Search for early and heavy black holes \rightarrow blazars
- One means ~ 400
- X-rays better than γ-rays