

Outline

- Outstanding questions in AGN research
- NuSTAR's AGN Physics program
- Simultaneous observing campaigns: XMM & Suzaku
- Early results for IC 4329A
- Conclusions and future prospects

Outstanding Questions in AGN Research

- What are the physical properties of the so-called corona?
- What is the distribution of SMBH spins?
- What is the nature of the soft X-ray excess?
- How are jets triggered? What is their role in feedback?

- What physical processes create the absorbing structures in AGN?
- What are the true physical properties of obscured AGN and what is their role in the CXB?

How NuSTAR Can Provide Answers

- Low background + high effective area = unprecedented sensitivity from 5-80 keV.
 - 1. Focusing optics vs. coded apertures
 - 2. Extendable mast for long focal length
 - 3. Low-earth, near-equatorial orbit
 - 4. 2 focal planes, 4 32 x 32 pixel CZT detectors each
- Ideal for precision imaging, spectroscopy, timing studies across a broad energy range.
- Enables searching for obscured AGN, breaking model degeneracies >10 keV, among many other science goals.

How NuSTAR Can Provide Answers

The AGN Physics Working Group

- <u>Chair</u>: Giorgio Matt; other members (present at the conference) include Laura Brenneman, Andy Fabian, Massimo Cappi, Fiona Harrison.
- Principle science goals: coronal properties, SMBH spins, separating reflection signatures from absorption, soft excess.
- SOC web site, including schedule of observations:
 http://www.srl.caltech.edu/NuSTAR_Public/NuSTAROperationSite/Home.php
- Total of 9 targeted sources for observing in cycle 1, 0.6 Ms/10 Ms:

• 3C 273	300 ks
• Ark 120	90 ks
• MCG-6-30-15	180 ks
• 3C 120	180 ks
• Swift J2127.4+5654	180 ks
• NGC 4151	150 ks
• IC 4329A	120 ks
• NGC 3783	300 ks
• MCG-5-23-16	300 ks

Simultaneous XMM & Suzaku Campaigns

- Science goals: SMBH spin, coronal properties
- Suzaku AO-7: 3 sources, ~310 ks, focus on corona
 - 3C 273*
 - NGC 4151
 - IC 4329A
- XMM AO-11: 5 sources, ~1.1 Ms, focus on spin
 - 3C 273*
 - MCG-6-30-15
 - Ark 120
 - 3C 120 (also Swift to check for inner disk disruption)
 - SWIFT J2127.4+5654
- Bonus science: soft excess (MCG—6, Ark 120, IC 4329A), absorption vs. reflection (MCG—6, NGC 4151, IC 4329A)

The Nature of the Corona

- Compact electron plasma close to BH, responsible for power-law in X-rays.
- Geometry? Sphere, slab, etc.
- Size? Active regions?
- Origin? Magnetic, thermal or not?
- Temperature? Correlation with Γ?
- Optical Depth? Measure apart from kT?

The Nature of the Corona

- Compact electron plasma close to BH, responsible for power-law in X-rays.
- Geometry? Sphere, slab, etc.
- Size? Active regions?
- Origin? Magnetic, thermal or not?
- Temperature? Correlation with Γ?
- Optical Depth? Measure apart from kT?

Importance of having data across broad energy range, especially in AGN with complex absorption, soft excess.

SMBH Spins from Reflection

Black Hole Spin and Galaxy Evolution

- Mergers of galaxies (and, eventually, their SMBHs) result in a wide spread of spins of the resulting SMBHs.
- Mergers and chaotic accretion (i.e., random angles) result in low BH spins.
- Mergers and prolonged, prograde accretion result in high BH spins.

Black Hole Spin and Galaxy Evolution

Mergers only

Berti & Volonteri (2008)

Mergers + chaotic accretion

Mergers + prolonged accretion

- NuSTAR won't increase sample size appreciably, but will improve precision and accuracy of spin measurements.
- Will help assess relative role of mergers vs. accretion for \sim 30-40 AGN in recent epochs.

Caveat: Spectral Complexity

Major issues: how to model soft excess, separate absorption and reflection components?

Separating Reflection from Absorption

- Multi-epoch & time-resolved spectral analysis assess variability of three spectral components: continuum, reflection, absorption.
- A physically consistent model should be able to explain ALL the data: spin, disk inclination, abundances shouldn't change.
- NuSTAR has high enough collecting area, spectral resolution and low enough background >10 keV to differentiate between reflection and absorption (e.g., MCG—6: Miller, Turner & Reeves 2008 vs. Brenneman & Reynolds 2006).
- When used **simultaneously with XMM and/or Suzaku**, will achieve best-ever constraints on BH spin (precision increased by factor ~10, more confident in measurement accuracy).

What about the Soft Excess (e.g., NGC 3783)?

- Present in majority of AGN that are not totally absorbed
 keV.
- 0.5-2 keV range accounts for most of s/n in AGN observations due to higher collecting area at these low energies, so parameterization of this region can highly influence spectral fitting!
- Physical origin of this emission is still a mystery, may differ source-to-source (e.g., Crummy+ 2006):
 - Scattered emission?
 - Comptonization?
 - Photoionized lines?
 - Relativistic reflection?
 - All of the above??

What about the Soft Excess (e.g., NGC 3783)?

Patrick+ (2011)

Similar statistical goodness-of-fit to *Suzaku* data, but measured spin depends critically on soft excess modeling, also iron abundance.

NuSTAR: Breaking Modeling Degeneracies

Preliminary Results on IC 4329A

Suzaku NuSTAR

~34% flux decrease over observation after ~12% flux increase at start.

Hardness Ratios

Suzaku XIS

 Hardness ratio shows softer when brighter, harder when dimmer

NuSTAR

 Hardness ratios mirror behavior seen at lower energies

Suzaku: Model-independent Variability

Time-averaged Suzaku Spectra: Power-Law Fit

Time-averaged Suzaku Spectra: Best Fit

Best-fit Spectral Model for Suzaku

Suzaku + NuSTAR Time-averaged Spectra

- power-law: $\Gamma = 1.79...$ not yet combined for E_{cut} constraints \rightarrow kT, τ
- WAs: 2 zones, ~ 10^{21} cm⁻², $\log \xi_1 = 0.61$, $\log \xi_2 = 4.0$, $\Delta \chi^2 / \Delta v = 27854 / 4$
- bbody: kT = 0.12 keV, $\Delta \chi^2 / \Delta v = 92/2$
- distant reflionx: Fe/solar = 2, $\Delta \chi^2/\Delta v$ = 943/2
- inner relconv(reflionx): $\xi < 30$, i = 30°, q = 1.25, a = ???, $\Delta \chi^2 / \Delta \nu = 0/4$

Summary

- NuSTAR will address several open questions in AGN research:
 - Coronal physics
 - SMBH spin
 - Reflection vs. absorption
 - Demographics of obscured AGN
 - Jet production
- Simultaneous observations with XMM, Suzaku, Swift will provide highest sensitivity ever achieved from 0.5-80 keV.
- Improved accuracy and precision on SMBH spin, coronal temperature and optical depth measurements.
- Early results on IC 4329A show excellent cross-calibration between *NuSTAR* and *Suzaku*, will independently constrain kT, τ, but likely not BH spin.

Synergies and Future Directions

- Astro-H (2014): larger area, better spectral resolution than Suzaku
 - separate absorption from emission in Fe K band
 - break degeneracy between truncated disk and lower spin(?)
- GEMS (2014): Most sensitive X-ray polarimeter flown
 - independent check on spin, but likely only for XRBs
- ASTROSAT (2014): Simultaneous UV & X-ray spectroscopy
 - tighter constraints on disk thermal emission, warm absorption
 - IXO/ATHENA/EPE (??): Further large increase in area over these missions
 - probe accretion/coronal physics on orbital timescales
 - increase sample size by $\sim 10x$
 - polarimeter?