Paolo Tozzi – INAF OATs

INAF ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

A scientific case for • future X-ray Astronomy: galaxy clusters at high redshifts

Clusters of galaxies @ z>1

X-ray cluster surveys in the Chandra/XMM-Newton era

Name	Flux limit cgs (0.5–2 keV)	Solid angle deg ²	Number of sources	Reference
SEXCLAS	0.6×10^{-14} (min)	2.1	19	Kolokotronis et al. (2006)
DCS	0.6×10^{-14} (min)	5.55	36	Boschin (2002)
ChaMP	1.0×10^{-14} (min)	13.0	49	Barkhause et al. (2006)
SXCS	$1.0 \times 10^{-14} (\min)$	40.0	72	This work
XDCP	1.0×10^{-14} (average)	76.0	22 (z > 0.9)	Fassbender et al. (2011)
XCLASS	2×10^{-14} (min)	90.0	347	Clerc et al. (2012)
Peterson09	$\sim 0.3 \times 10^{-14} \text{ (min)}$	163.4	462	Peterson et al. (2009)
XCS	>300 net cts	410.0	993	Lloyd-Davies et al. (2011)
SXDF	0.2×10^{-14} (min)	1.3	57	Finoguenov et al. (2010)
COSMOS	0.2×10^{-14} (min)	2.1	72	Finoguenov et al. (2007)
XMM-BCS	0.6×10^{-14} (min)	6.0	46	Suhada et al. (2012)
XMM-LSS	$\sim 10^{-14}$ (min)	11.0	66	Adami et al. (2011)

Tundo et al. 2012

http://adlibitum.oats.inaf.it/sxcs/

Home (

Catalog EXSdetect People

Papers

The Swift X-ray Cluster Survey (SXCS) is an ongoing project aimed at finding serendipitously galaxy clusters in the Swift X-ray Telescope (XRT) archive.

The Swift mission, launched in 2004, is dedicated to the study of Gamma-ray bursts (GRBs), which are detected and localized by the Burst Alert Telescope (BAT) and then followed-up by the XBT. The arebive of GRB follow up images obtained in this way constitutes a random survey of

nens una opua	
Aug-01-2012: Catalog	g I released
X-ray Cluster Su	irveys
ROSAT 400d	
ROSAT MACS	
ROSAT WARPS	
ROSAT REFLEX	
Chandra ChaMP	
XMM XCS	
XMM LSS	
XMM XDCP	
XMM X-CLASS	

News and Undates

Useful Links

SWIFT-XRT

WFXT

Swift X-ray Cluster Survey

SWJ124812+170451 SWJ093749+153540 SWJ092719+301342 SWJ090946+415713 SWJ082113+320004 SWJ035259-004842 SWJ 164956+313021 SWJ 148646+275157 SWJ140639+273546 SWJ133055+420017 SWJ131300+080259

Tundo et al. 2012 Moretti et al. 2012 Liu et al. 2012

Redshift measurement from X-ray spectra (Yu et al. 2012).

CL1415 field ACIS-I+ACIS-S 80+270 ks

C

X-ray Astronomy: towards the next 50 years! Milano, October $1^{st} - 5^{th}$, 2012

Tozzi et al. (2012)

CXO1415, z_x ~ 1.5

Redshift measurement from X-ray spectra Yu et al. 2012

CXO1415 mass measurements

X-ray Astronomy: towards the next 50 years! Milano, October 1st – 5th , 2012

The best candidate for the most massive X-ray cluster at z~1.5 Selected in the XDCP survey (Fassbender et al. 2012)

Chandra proposal (PI PT, AO14) to obtain ~1500 net photons

Color image of XMM2235 from the combination of *i*, *z* (HST/ACS) and *K*s (VLT/ISAAC) filters. Overlaid X-ray contours from *Chandra* (196 ks)

Rosati et al. 2009

CL 1415 HST/ACS i775-z850

CL1415 @ z=1, a CC in the distant Universe

Santos et al. (2012)

Angular resolution ~ 25 kpc in the inner regions About 7000 net photons with Chandra

 $\rm Z_{\rm Fe}/\rm Z_{\rm Fe0}$ kT (keV) \mathbf{z} O kpc kpc

CL1415 @z=1, a CC in the distant Universe

Santos et al. (2012)

AGN radio feedback in action at z = 1

WFXT on high-z clusters: Source statistics and Spectral characterization

See The Wide Field X-ray Telescope (MemSAIt) Murray et al. 2011 Rosati et al. 2011 Tozzi et al. 2011 Borgani et al. 2011

WFXT on high-z clusters: Morphology characterization, cc at high-z

(10"=80 kpc at z=1) Massive z=1.39 cluster with Chandra (190 ks) (Rosati et al. 09) 2 Mpc ---- Single beto fit WFXT 5" HEW 2 RA=338.83673, Dec=-25.961199 Cool core RA=338.83673, Dec=-25.961199 0.1 WFXT 10" HEW, the cool core is gone ...! Chandra observations

CONCLUSIONS

Finding high-z massive clusters Discovery space of Chandra and XMM is limited – X-ray selection requires high (< 10" HEW) angular resolution down to ~10⁻¹⁴ cgs on ~100-200 deg²

Identify and characterize massive clusters at high-z A single temperature for a M> 10¹⁴ M_o clusters needs about 200 ks exposure and good angular resolution

Study dynamics and thermodynamics of massive clusters at high-z A detailed temperature, abundance and mass profile rquires more than 300 ks on the brightest high-z clusters, and at least 5 arcsec HEW resolution

The discovery space opened by Chandra and XMM can be explored only with a wide field, high angular resolution survey mission. Without a survey optimized mission (maximum discovery speed: minimum background, resolution ~5" HEW, large FOV, large collecting area) many scientific cases will be lost forever and the X-ray sky will not be competitive with the IR, optical, Radio sky.