

ULXs and accretion physics beyond the Eddington limit

Tim Roberts

Andy Sutton, Matt Middleton, Chris Done (Durham) Jeanette Gladstone (Alberta) Floyd Jackson (CfA)

ULXs and super-Eddington accretion

- Now commonly accepted most ULXs harbour stellar remnant BHs accreting at or above Eddington limit (Feng & Soria 2011)
 - Evidence: ultraluminous state X-ray spectra (Gladstone et al. 2009); X-ray luminosity functions (Swartz et al. 2011; Mineo et al. 2011); relation to star formation (King 2004) etc...
 - Exception: most luminous ULXs, at ~ 10⁴¹ erg s⁻¹ (Farrell et al. 2009, Sutton et al. 2012)

Are the disc spectra really disc-like?

Fit best examples with best disc models

 $\square \text{ Recover } L \sim T^4; \text{ but fits poor}$

\Box Do we understand accretion discs at L_{Edd} ?

Monday 1st October 2012

Discs as 2-component models

 Try 2-components as per brighter ULXs
Better fits with advective disc + corona
Physically – wind launched as ULX crosses Eddington threshold

Can we say more about ULX physics?

- Broadened disc spectra show emergence of two components in bright ULX spectra
- □ What are these components?
- □ New study (Sutton poster)
 - Separate 89 obs from 20 ULXs into 3 distinct regimes based on empirical spectral model
 - Recover deabsorbed fluxes, hardness
 - Calculate fractional variability on 200 s timescale in broad, soft & hard bands

Hardness-intensity diagram

Monday 1st October 2012

Hardness-variability diagrams

Implications (1): modified discs

- Mainly observed at ~ 1 3 × 10³⁹ erg s⁻¹: transition between sub- and super-Eddington for stellar-mass BHs
- □ Some at higher L_X massive stellar remnant BHs ($20M_{\odot} < M_{BH} < 100M_{\odot}$)
- Detection of strong, hard variability inconsistent with classic disc – supports 2component model with emergent ULX spectrum

Implications (2): super-Eddington ULXs

- Inclination important in perceived spectrum (cf. Poutanen et al. 2007)
 - On-axis: ultraluminous
 - Off-axis: extreme UL
- □ Supported by variability
 - Extrinsic, caused by clumpy wind crossing line of sight
- State changes in ULXs due to narrowing of funnel opening angle (cf. King 2009)

Conclusions

- We can now qualitatively explain the range of ULX spectra in terms of 3 properties: BH mass, accretion rate and inclination
- □ Main characteristics agree with models of super-Eddington accretion Optically-thick.wind-launched

