AB
W Durham

University

ULXs and accretion physics
beyond the Eddington limit

Tim Roberts

Andy Sutton, Matt Middleton, Chris
Done (Durham)

Jeanette Gladstone (Alberta)
Floyd Jackson (CfA)




ULXs and super-Eddington accretion

Now commonly accepted most ULXs
harbour stellar remnant BHs accreting at or
above Eddington limit (Feng & Soria 2011)

B Evidence: ultraluminous state X-ray spectra
(Gladstone et al. 2009); X-ray luminosity
functions (Swartz et al. 2011; Mineo et al. 2011);
relation to star formation (King 2004) etc...

B Exception: most luminous ULXs, at ~ 10%' erg s
(Farrell et al. 2009, Sutton et al. 2012)

How does super-Eddington accretion work?
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Gladstone, Roberts & Done 2009

ULX sEectraI sequence.

Spectral sequence: rise in -
accretion rate?
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Outstanding questions:

B How do the disc spectra
evolve to ultraluminous?

® s this sequence solely a
function of accretion rate? '
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Are the disc spectra really disc-like?

the Eddington limit

_[1 Fit best examples with best disc models
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Recover L ~ T#; but fits poor
Do we understand accretion discs at Lg4?
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Discs as 2-component models

Eddington threshold
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Data from M31 ULX, Middleton et al. (2012)

Try 2-components as per brighter ULXs
Better fits with advective disc + corona
Physically — wind launched as ULX crosses
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et al. (in prep.)
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Can we say more about ULX physics?

Broadened disc spectra show emergence
of two components in bright ULX spectra

What are these components?

New study (Sutton poster)

B Separate 89 obs from 20 ULXs into 3 distinct
regimes based on empirical spectral model

B Recover deabsorbed fluxes, hardness

B Calculate fractional variability on 200 s
timescale in broad, soft & hard bands
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Hardness-intensity diagram
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Higher L, discs
— massive BHs?
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erg s modified
discs dominate
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Hardness-variability diagrams
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Low F__. (< 10%) in most dISC & all UL

High F .. mainly seen in some extreme UL;
stronger above 1 keV; not persistent

Monday 1st October 2012 Tim Roberts - ULXs and accretion physics beyond 8
the Eddington limit



Implications (1): modified discs

Mainly observed at ~1 -3 x 109 erg s
transition between sub- and super-
Eddington for stellar-mass BHs

Some at higher L, — massive stellar
remnant BHs (20M; < Mg, < 100M,,)

Detection of strong, hard variability
iInconsistent with classic disc — supports 2-
component model with emergent ULX
spectrum
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Implications (2): super-Eddington ULXs

Kawashima et al. (2012)

Inclination important in perceived LRI
spectrum (cf. Poutanen et al. 2007) \

B On-axis: ultraluminous
B Off-axis: extreme UL

sub-relativistic,
mildly hot funnel jet

(3) cool, dense, and
slow outflow

(4) shock-heated j -
. - region smeo g7 Ul ttering
Supported by Varlablllty (1) radiation pressure
d?;mmant d{slg hotort

B Extrinsic, caused by clumpy wind
crossing line of sight
State changes in ULXs due to

narrowing of funnel opening angle
(cf. King 2009) .

Middleton et al. (2011)
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Conclusions

We can now qualitatively explain the range
of ULX spectra in terms of 3 properties: BH
mass, accretion rate and inclination

Main characteristics agree with models of
super-Eddington accretion

Optically-thick wind launched
¢t from loosely bound top layers

Model of super- Iy AT \
Eddington disc——— 5 = > NS AN ‘Standard’
from Dotan & ——— 2\ o€ N & N disc
Shaviv (2011) ! v
. Disc becomes radiation-
falls back — hard thermal X-rays pressure dominated
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