SOFT X-RAY LAGS AND THE CORRELATION WITH BH MASS IN RADIO QUIET AGN

BARBARA DE MARCO (CENTRO DE ASTROBIOLOGÍA, CSIC-INTA)

Collaborators: G. Ponti, P. Uttley, M. Cappi, G. Miniutti, M. Dadina, A. Fabian, E. Cackett

FROM THE INTERACTION OF PRIMARY RADIATION WITH THE ENVIRONMENT SEVERAL SPECTRAL FEATURES EMERGE

LENGTH SCALE FEW-TO-HUNDREDS GRAVITATIONAL RADII

CORONA

ABSORBER

ACCRETION DISK

THE X-RAY VARIABILITY

AGN PRIMARY EMISSION IS HIGHLY VARIABLE

THE X-RAY SECONDARY COMPONENTS ACT LIKE FILTERS TO THIS RADIATION

THE X-RAY VARIABILITY

AGN PRIMARY EMISSION IS HIGHLY VARIABLE

THE X-RAY SECONDARY COMPONENTS ACT LIKE FILTERS TO THIS RADIATION

THE X-RAY VARIABILITY

AGN PRIMARY EMISSION IS HIGHLY VARIABLE

THE X-RAY SECONDARY COMPONENTS ACT LIKE FILTERS TO THIS RADIATION

X-RAY LAGS IN BH ACCRETING SOURCES

Frequency (Hz)

1) INTERPRETATION

1) INTERPRETATION

ALTERNATIVELY THE SOFT LAG MAPS REVERBERATION OF DISTANT REFLECTORS CLOSE TO THE LINE OF SIGHT (MILLER +11)

1) INTERPRETATION

MRK 766 & MCG-6-30-15 (EMMANOULOPOULOS +11)

> MRK 1040 (TRIPATHI +11)

REJ 1034+396 (ZOGHBI & FABIAN +11)

> PG 1211+143 (DE MARCO +11)

OTHER DETECTIONS FOLLOWED:

2) PROFILE CHANGE

HOW COMMON IS THIS?

TYPE 1 (I.E. UNOBSCURED) AGN

FROM XMM-NEWTON ARCHIVE EXPOSURE \geq 40 ks

VARIABLE IN HARD X-RAY BAND (USING TABULATED VALUES OF EXCESS VARIANCE IN CAIXAVAR SAMPLE PONTI +11)

TABULATED BH MASS ESTIMATES

THE SAMPLE INCLUDES 32 SOURCES COVERING A RANGE OF ~3 ORDERS OF MAGNITUDE IN BH MASS

CROSS-SPECTRAL ANALYSIS BETWEEN SOFT EXCESS-DOMINATED AND POWER LAW-DOMINATED ENERGY BANDS

SOFT LAGS DETECTIONS

WE DETECTED SOFT X-RAY LAGS IN 15/32 SOURCES, SPANNING ~3 ORDERS OF MAGNITUDE IN AMPLITUDE (τ) AND FREQUENCY

SOFT LAGS VS BH MASS

THE SOFT X-RAY LAGS SCALE WITH BH MASS

CORRELATION SIGNIFICANCE $\gtrsim 40$

SOFT LAGS VS BH MASS

VERY SHORT DISTANCES INVOLVED

CONCLUSIONS

SOFT X-RAY LAGS ARE DETECTED IN A SIGNIFICANT NUMBER OF SOURCES OF THE SAMPLE

SOFT X-RAY LAGS SCALE WITH BH MASS

SOFT X-RAY LAGS MAP VERY SHORT DISTANCES, OF THE ORDER OF FEW GRAVITATIONAL RADII

THIS IS ALL CONSISTENT WITH EXPECTATIONS FROM DISC REVERBERATION

THANKS FOR YOUR ATTENTION!

SUPPLEMENTARY

NOTE ABOUT BIASES IN THE CORRELATION

HIGH BH MASS

SOFT LAG PROFILE

NON-DETECTIONS

EXAMPLES:

 $\frac{\text{CORRELATION}}{\text{SIGNIFICANCE}} \ge 50$