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The Metric and The Dynamics
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The RW metric tell us where in a 3 dimension space is an event 
and at which proper time. The coordinates of the event do not 
change as a function of time but the coordinate system will 
change as a function of the proper time because of the expansion
factor a(t). The geometry is determined by the value of k = -1, 0, 
+1.
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Einstein Equation – Einstein 1916
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Ricci’s scalar

Cosmological Constant

Energy momentum Tensor simplified in a Robertson Walker Metric
Metric – The Universe is homogeneous and isotropic.

In this equation figure both the geometry and the Energy

Stress Tensor

Ricci’s Tensor
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The Hubble law
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The Models and
The Cosmological Parameters

Here we derive the observable as a function 
of different cosmological parameters. The 
goal is to derive a fairly complete set of 
equations useful for data reduction. See also 
the following set discussing the relation to 
geometry and some applications.
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Simple Preliminaries - Dynamics
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V=H0 r We consider a sphere exdpanding with 
a velocity v = H r. vWe assume also 
that the energy and the mass are 
conserved

Critical density
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Look at it as Energy First
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A Newtonian Model
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E ∫ 0
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And I can write:
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The Equation to be solved
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Ω0 >1    E<0
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Ω0 <1    E>0
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Obviously (as an example Ω>1):
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From Einstein Equations: Friedmann
1888 - 1925
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This is very similar to the equation we derived in the Newtonian
Toy so that the solution has been already derived for k=1, 0, -1.
Here as you have seen the difference is the constant in the 
Equations. Furthermore I can write – see for Ω > , < , = 1:
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Adiabatic Expansion

The two Friedmann equations are not indipendent and are 
related by the adiabatic equation:

( )2 3 3

dE p dV

d c a p daρ
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= −

And in case I have Λ∫0 I keep the same equation using:

4 2c cp p and
8 G 8 G
Λ Λρ ρ
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Radiation and Matter
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And
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Dust Universe to make it easy
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Angular separation
From Mag Notes:  ds2 = -r1

2 a2(t1) ∆θ2 = -d2
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Integration, Mattig solution
see transparencies

• The problem is to derive the solution of the Friedmann equations. In 
other words we want to have r or better a0r as a function of 
observable as z, Ω, H0 …

• We assume for now Λ = 0.0
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For k=1
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( )

( )
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d d
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( ) ( )( ) ( ) ( )
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θ θ

α θ θ α θ θ

θ

α θ θ
θ θ θ

α θ

= =
−

= = −

∫ ∫

∫ ∫



Cosmology 2004_2005 32

Now we look at the metric’s equation
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Now we prepare some transformations
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Now from slide 28
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Ω Ω

θ

Ω

θ
Ω

Ω
Ω

Ω

−

− = − =
−

 = = = 
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Summary of relations
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Additional relations
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Generalities
• As we have seen we can integrate for a dust Universe. 

We can derive a compact equation also when we 
account for a Matter + Radiation Universe. It is 
impossible to integrate if we account also for the 
cosmological constant or Vacuum Energy. In this case 
we must integrate numerically.

• On the other hand we must also remember, as we will 
see shortly that the present Universe is a Dust Universe 
so that what is needed to the observer are the equations 
we are able to integrate.

• Recent results, however, both on the Hubble relation 
using Supernovae and on the MWB, with Boomeramg
and WMAP , have shown that the cosmological constant 
is dominant and Ωtot=1 so that we should use such 
relations.
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Compare with toy Model: Ωm=1, ΩΛ=0 & The real thing
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The look back time

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

0
0 0

4 3 3 2
0 0 ,R 0 ,B 0

4 3 3 22 2
0 0 ,R 0 ,B 0 ,DM K

0,R 0 ,

,DM K

m B 0B DM ,

a ta 1 d d d 1 1 dzH a a log log
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Distance – In a different way
I have a standard source emitting a flash 

of light at the time tem. If the photons 
emitted are Nem a telescope of Area A 
would receive,  disregarding expansion 
and considering the physical distance 
is a(tem) r, A / 4 π (a(tem) r)2 photons. 

However the Universe is expanding and at 
the time of detection the area of the 
sphere where the photons arrive as 
expanded to 4 π (a(tobs) r)2 .

That is Nem/Ndetected = A / (a(tobs) r)2

We have to take into account of two more 
factors:

1. Photons are redshifted so that their 
energy changes by a factor 
1=z=a(tobs)/a(tem)

2. The time between flashes δt at the 
source increases by a factor (1+z). 
This also corresponds to a loss of 
Energy per Unit Area of the telescope.

The Luminosity distance can be defined 
as:

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

2 22 2
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L 0
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0 0 0

0 2
0 0
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0 2 2
0 0 0 0

L
0 0

L LFlux
4 d4 a t r 1 z

Ld a t r 1 z for dust
4 Flux

z 2 1 z 1
2ca r
H 1 z

1z small 1 z 1 z
2

1z z z z2c c2a r
H 1 z H 1 z

c vd z
H H

ππ

π

Ω Ω Ω

Ω

Ω Ω

Ω Ω Ω Ω
Ω Ω

= ≡
+

= = +

 + − − + +  =
+

+ = +

+ −
= =

+ +

= =
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Distance

( )
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Ω Ω Ω
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∫ ∫
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And with Λ
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And for Ωk < 0

( )
( ) [ ]( )

( ) [ ]( )

( ) ( )
( ) [ ]( )

z

o 0 2
0 0 ,m

z

0 2

2

0 0
0,m

k m2 2

z

L 0 k 0 2
0 k 0 ,m

0 0

c dza arcsin r or
H 1 z 1 z z 2 z

c dzr sin
a H 1 z 1 z z 2 z

c 1 z dzd a r 1 z sin
H 1 z

k c

1 z z 2 z

I use 1 ;
a H

Λ

Λ

Λ

Λ

Ω Ω

Ω Ω

Ω
Ω Ω

Ω

Ω

Ω Ω

=
+ + − +  

 
 =  
 + + − +   

= −

 
+  = + =  

 + + − +  

= −



−

∫

∫

∫



Cosmology 2004_2005 46

And for Ωk > 0 - Open
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Magnitudes

( ) ( )Bol L 0 mm z M 5 log d z,H , , 25ΛΩ Ω= + +
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Volume - Proper
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Volume - Comoving
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Comoving - Dust Universe 
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