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The Metric and The Dynamics

4 )

(zi";; ) +17 (467 + Sin’0 Af)

Vo

AT? =c°At° —a’ (t)<

J

The RW metric tell us where in a 3 dimension space is an event
and at which proper time. The coordinates of the event do not
change as a function of time but the coordinate system will
change as a function of the proper time because of the expansion

factor a(t). The geometry is determined by the value of k = -1, O,
+1.
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Einstein Equation — Einstein 1916

1C0CC
R — i R=— sl T Stress Tensor
Ricci’'s Tensor —-A Cosmological Constant

i
Ricci’s scalar

In this equation figure both the geometry and the Energy

Energy momentum Tensor simplified in a Robertson Walker Metric
Metric — The Universe is homogeneous and isotropic.

T,=(p+pc)uu,-pg,

Cosmology 2004 2005



L. The Hubble law

Separation between two observers

5l=a(t)5r
d Rl
L5l=a(t)or or=
" a(t) ro or a(t)
d 5410 v = H (1)
dt  a(t)

Cosmology 2004 2005
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The Models and
The Cosmological Parameters

Here we derive the observable as a function
of different cosmological parameters. The
goal is to derive a fairly complete set of
equations useful for data reduction. See also
the following set discussing the relation to
geometry and some applications.
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Flat (k = 0)
C=2nr

Positive (k > 0)
C < 2ar

Cosmology 2004 2005

Negative (k < 0)
C> 2nar



Simple Preliminaries - Dynamics
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H,r We consider a sphere exdpanding with

>

a velocity v = H r. vWe assume also

that the energy and the mass are

conserved

=0

E

SE>0

E <0

\

const =

2005
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Look at it as Energy First

erdr 7 :Z?ﬂpH(fR5

4d7pH; I

2
_ [PV 55 _
Ee=], 5 ==

0

m dr)
E,=-G R—d(r)p r3:—GjR iﬁrj'p £a’r3:——( 7)
0 r 0\ 3 r 15
(47) ,
E, " 15 7% s
E, 2—”ij125 3H;
E 8G

ET:EK+EG:EK(1+E—Z]:EK£1—,03HOZJ:

£ [1-2 |- -2

Pe
The above defines p, and (2

Cosmology 2004 2005
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Ly A Newtonian Model

V=H,r We consider a sphere exdpanding with
a velocity v = H r. vWe assume also
that the energy and the mass are

conserved

(E=0

—va—GMmzconstE<E>0

i \E<0

E=0
4 3

G—-nr,p )
i l 0 Fo 3H
M=§7zr03p0:>0:EH02r02— 5 :po’c:é’ﬂé?

/
Critical densit
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RIEREED I, GMm dr  [2GM
t:tO —my — :0 N
r dt r
3
i 1 Z,,Oz
r >y t ~
jdrrzzj(ZGM)Zdt:t:t ,'r=r0:>t0:3 ;
0 0 0 1
(2GM):
\ ; ,
d 2 t 3
also : r: = H ,dt = solutionr =7, [t_j
vy 0
] 1 1
(2GM )2 = (vozro)z :(Hozrfro)z
3
2.3
t—30 _ZH—J ~ 2 102h? -3
0 i _E 0 pc _ 0 ng
H(f’”(f
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E+0

2 2 2 2
Fem H _47ZG,0 2 —m H, _47ZG,00 ’”02 Divide by H,r,
2 3 2 3 2m

H° 2 4nGp 2 )\, (HS 2 4zGp, 2
= > 5 2> o ro= > 2 2.2
2 H,r, 3 H,r 2 H,r, 3 H;r

_3H, o =P
87Z-G 100,0

H

IO(),c

H’r’  8zGpr’ .
RN '20 —=1-12, I conserve the mass and transformation
H, r H, r
0 "0 0 "0

) d H ( r] dD
3 sk
% % r

L = Ty D = r T = HOt Hr = F ! = 7 =

3

p, T 7, dt Hy, d(Hpt) dr

Cosmology 2004 2005
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And | can write:

*\? 3.2
(dD] oG I i E£0= 2 ]

dr’ 3H; Po N

£ \2
D 0
(d ; ] Df,f =1-C Changevariables again

dr
§=|1_QO| ' r—|]_[20|2r* D’ =% dé dr = L —dr
0 Q 1- 22| -0

2

(dgj -0, Q1 _(20|:] o

dr .
deY 1 [+l for 2<1I
(EJ E_ —1 for Q2> 1

Cosmology 2004_2005
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The Equation to be solved

1 1

g _ (L ]T _ (Ii_fj
dt & E

1

| dr= MHéj dé

r=>T =t ED =y

Cosmology 2004 2005
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1
n\?

3 I
szoé(éj d/,’:{«f:SinZ (gj}zﬂ 2727 2SingCOSE
2

Sin n

Ui

In 2 Sinzcosgdnzﬂsinz %diy:jon (]_COSU) =

0 n 2

2
COS —

, . l—cosa
since Sin—=,———
2 2

T=§‘Z(7]—Sin77)=é(ﬂ—ﬂ'nﬂ) §=Sin2%

Cosmology 2004 2005
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0, <1 E>0
1
i . 22 1]
3 sinh”
zf o dé = §=Sinh2(zj =Jn 2 2SinhQCOShQid77:
0\ I+& 2 | cosi? ! 2 22
.2 1]
sinh—-
—1+cosh
jn 2 SinhQCOSthU:InSinhz Qd;y:jﬂ( cos 77):
0 n 2 2 0 2 0 2
cosh--
, L a \/—]+cosha
since Sinh— =
2
=§707(—77+Sinh77)=§(sinh77—77) fzsinhzg

Cosmology 2004 2005 14
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e Obviously (as an example Q>1):
3
I |7- Q\ \J—QOP
H
2(77 Sznn) QO -QO ol
t = Q03 i(77—Sini7)
-0 H,?
e =2l el
€, 9,
i oL, sin Qand
o |1-2,
B v, B v

Maximum radius forn=n,;5=1=>r,,
Jorn=rx;¢ TV Y

Cosmology 2004 2005 15
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Plot of A = 0 solutions

5

]

| | | | | If— ID ;)
() =
(2 =0.5 e
\‘ ”
. [ 5 - f.
~No=1
—d |.| -
B Q=2
‘h““/-
l“
- .
£ '
] “1-
; l l l l | L &
=1 i | 2 3 4 5 &

H f
Cosmology 2004 2005
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From Einstein Equations: Friedmann {;

(Eiee 1888 - 1925 ﬂwﬁ
.. . 2
2a 4 +§€C :—87[G£Z and a2+kc2:8—7sza2andp=p(,0)
a a % 3
Combined : ﬁ=—@(,0+3_€)
a 3 C

This is very similar to the equation we derived in the Newtonian
Toy so that the solution has been already derived for k=1, 0, -1.
Here as you have seen the difference is the constant in the
Equations. Furthermore | can write —see for Q> , <, =1

‘b

1 «\2 < \2
kz =— (ﬁj (L—]j with p, =i(ﬁj and (2 =
a- ¢ \a £y S7G\ a Py

=24 (2

a C a

Cosmology 2004 2005
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L Adiabatic Expansion

The two Friedmann equations are not indipendent and are
related by the adiabatic equation:

dE=—pdV
a’(p 02a3)=—p da’

And in case | have A+0 | keep the same equation using:

. _/104 B — +/102
P=P=e " PP G

Cosmology 2004 2005 18
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Radiation and Matter

d ( Jo, c2a3) =—pda’ ; assume p =0 pressureless material dust

gas or nonrelativistic material = ideal gas

p= kTZ p.c. =w(T)p,c withw(T)< I
m,c

d(p02a3)=0:>pa3 = const

3 3
pa =p,a
Relativistic gas and Radiation

1
p 3,0

c’ (pda3+a3dp)=—§pczda3 = 4pa’da+a’dp=0 |*a
4pa3da+a4d,0=0:>d(pa4):const

p,al =p,a,=if BB=T(z)xT,(1+z)
Cosmology 2004 2005 19
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a

. \7Z
d2+kc2:8—ﬂGpa2:> a | _s7Gp
3 a, 3

|

a,

I:(fora:ao)

2
Hj (]—(S%G'Oojz—kiz:or:

3H,’ a,

H; [1—8”(;"0):1&15(1—.00):——

3H,

Proe =Pr TPt Ppy TP, =

4 3
a a
=0,. {QO,R (—Oj +0,, (—Oj +.92, oy
a a

Cosmology 2004 2005
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Sr

2
d2+k02 :TGpaZ :(—) —

_ 87TG,0_kCZ _ 877G(/0R+/OB+IODM +/0A)_kc

And

a

2
3 a a

SzGp (ﬁjz __kc2
a
2

(*=)H’ 3

SzG a
H’ = — Py |:QO,R (_0

? a Y a Y k ¢’
j + QO,B (_Oj + QO,DM (_Oj + QA T
a a a a

3

2 2

a 3 a

4 3 3 P 2 2

a a a ke H: a

H’=H, Q) p (—Oj +9,, (—Oj +0) (—Oj +0Q, |-——=L-
a a a a H, a,

H? =H? [Q (1+2) +0,,(1+2) +02,,, (1+z) + @, (1+z) +_(2AJ

2 A 2
where (2, = — ljc > and 2, = < 5 from equation above (*)
a, 11, 3H,
| )+ 02, +92, 0+ 2, + 02, |=1 foranyt

Cosmology 2004 2005
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a,

:
j_

T_

Dust Universe to make it easy

3

SzGp

2
[i} :(fora:ao&p:pO)DHj (1—
a,

SrG
o i (1-2)

0

Cosmology 2004 2005

2 N2 5 2 N2 3 2
8nGp| a a H,” 87Gp| a a > 1 (aoj a
| T T2 — | = | ~H—p| | |
3 (a()) (a()) H, 3 (aoj (aoj Po.c a a0]
. 2 . 2 ]
ij pp P (@j:H; (F%)z(ij :Hj{ﬂo (&}(z-go)
a, Py \ 4 a, a il
:J- jto cdt Jto cdt adt t« cda
1—kr’ ( ) ! a( )aaﬁ a a(t)a
.
a cda c [ a 2 a a
= = QL |+(1-2 —Ld| —
/) L a(t)a aoHoL{ O(aj+( 0)_ a (aoj
Integrating both
N _QOZ+(_QO—2){—1+(QOZ+])§}
V=
H,a, Q7 (1+z)

22
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(\S)

0(z)=~£ _Po(”f)38”G: pi(1+2)
p.  3H(2) % S (1+z) [9 (1+2)+(1-92)]
o) AUxa) e

Q(1+z2)+(1-9Q,)) 1+0

Cosmology 2004 2005 23



©3 UNIVERSITA

S
%
ICOCCA

H(z)=H, (1+2)' [ Q,(1+2)+(1-2,)]
1 a,

da 1 a
B —H (I+2) 0, z+1 ;L =——da=
dt a o +Z)\/ 0 2% a, I+z ¢ (1+2)

dz

2

da B a,
aHO(]+Z)\/[20 z+1 (]+z)2aH0(]+z)\/Q0 z+1

(]+Z) g — dz

(]+Z)2 H0(1+Z)\/QOZ+] HO(]+Z)2\/QOZ+]

! az =(f0rQ0=]):£HO_] ! >

t(Z):Fo‘CO(]+Z)2\/QOZ+] 3 (1+z)2

dt = dz

dt =

Cosmology 2004 2005 24
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Angular separation
From Mag Notes: ds? =-r,? a(t,) A = -d?

d 1
a(t)r

a:+(0, —2)[—]4—([202—# 1)5}

A0 =

. 2c
- H,a, Q) (1+2)
A6:H0a0(1+2) dQOZ(]-I—Z) _
e 4 QOZ-I—(QO—Z)l:—]-I—(QOZ-I—])E:I
H, d[202(]—|—z)2
2c

40, _z)[_n(goﬁ 1)5}

Cosmology 2004 2005 25
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Angular diameter distance: Q,, + Q, = 1 models

1
) > S @
= ~—0.01
L e E e e e e e . L Linmm B L
2 - T~ T
E e | 1 o - b
: 4% SNNNES
-|':|"‘l - AT bk e o ‘\\\" .‘l
'_.' -p-r -..-l-l- T = ] "\r ‘Lq 1 [}'1
= - L TN 0.2
A ~ L NN
- [ “Ao——0.3
=0 -“\ . N -'—'_[} 4
Z N[ :
\ “'... -_-__.[}.?
»M—1.0
1 10
z

Cosmology 2004_2005
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Integration, Mattig solution

see transparencies
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« The problem is to derive the solution of the Friedmann equations. In
other words we want to have r or better a,r as a function of
observable as z, O, H,

*  We assume for now A O 0
I basically must solve :

[

we will find r = Sin(9, —3) where 3 is related to H Q, z
and Sin( 9, —9) to H, Q, and we explicit this

J‘l‘o c dt

Cosmology 2004 2005 27
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= — 4”G(p+3 pj
3 C

ad+2a +2kc’ =47Z'G(,0+£2j a’

2
H; (1—87[G'00j:—k%:>0r:>

3H,’ a,

H? [1—8”(;/’0]:1{5(1—[20 -

3H,)

Cosmology 2004 2005
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2

8
H [1_ 7Gp, j =H; (1-0))= ~%_ furthermore since

2

3H,’ a,
c2
=p, .02 and a, =-
Po = Po.*<0 0 H’ (]_Qo)
8w St ., pa, 8u 3H. 1 c’ %
P’ =""Gpd =GP =T G, T T

3 3 a 3 8zG a| H,(I1-£,)

1c 1 0
= O—C yQDeﬁnea: - : 7

aH,(Q -1)> Hy (2,-1)"

i’ =c’ (ﬁ—lj
a

Cosmology 2004 2005



BICOCCA
da o (* lj cdt da da
—:c,/——l =>|*—| = = =
dt a a a a—a \/a(a—a)

Change variable: a=0 Sin” (%)

da = %a sin 0d 0

1

. Ja ) Easiné’dé?
L \/a(a—a) :L \/aSinz(y)(a—aSinz(y)) ]
2 2
lOtsinﬁa’é’ lOtsin(9a’¢9

l 9\/(12 Sin’(97) - a” sin* (/) i aSin(%)\/(l‘Sinz(%)) :

Cosmology 2004 2005 30




2 Z
[ -
BICOGCA

I,
0

1 1

Easiné?d@ 6 Easiné’dé?
aSin(%)\/(l—Sinz(%)) L aSm(/) COS((y)
l0(51116?61’0

%
=("a0=0-0

j /aSan o

Cosmology 2004 2005
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== Now we look at the metric’s equation

jr dr _ J‘:O CTdt (aS we have just derived ) =6,—-0

= ArcSin(r
ﬁl - (7)

ArcSin(r)=6,-0=r=Sin(6,-0) or
r=Sin(6,—0)=r=Sin(6,)Cos(6)—Cos(6,)Sin(6)

and

a, Sm (9/
a Sin’ 6/

Cosmology 2004 2005 32
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=% Now we prepare some transformations

Sin(0) =
= 25in(9/5) Cos (04 ) = 25in( %) \/I—Sin2 95) =
Sm(é% j Sinz(g% j Sm( b j Cos’ (‘9/ j

=7 1— )

Jl+z (1+2) Jl+z (1+z)

:251,1(9/)\/ (e/)

Cosmology 2004 2005 33
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Cbs(@):

Sin® (‘9% )

= Cos” (9~ Sin* (95) =1-2 Sin* (9/) =1-2 —
1+z—2Sin2(%) Cos’ (‘7) Sin’ (9/)+Z Cos (8

l+z 1+Z

Cosmology 2004 2005
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T Now from slide 28

2
0
HX(1-Q)=-= - 0 d1 te ;
0( o) aoz o H (_(2 _1)% and 1 can write
% ] COS /a Sin’ (/j ao(by defmition):
I :mg—z)é(ao—z)%a:aao—z
\/HOZ(QO_]) Qo 0,
0Q -1 Q-2 +2_  2-0
Cos(0)\)=| 1/ 220 2% 0 9 0
OS( 0) {A 0 } 20, Q
20, -1

Sin(@o) — [1 —Cos’ (6?0 )] -

0

0

Cosmology 2004 2005
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..;'I.'.;.;% Summary of relations

r=Sin(6,)Cos(0)—Cos(6,)Sin(6)

sin(@ 2V Cos(0) = 2=

sw%

COS(Q):COSI(fOZ) =i sin(0)=2— \/COS (9/ j

Cosmology 2004 2005
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Additional relations

Cos(6,) =2 ;Q - Cos’ (6% j _ Sin’ (% j
200 _ o (% ) ot (94 ) =200 (%)
eo %)= |2
sin(0,) = 232 2530 % ) cos %4
Sm(ﬁ/) 2ﬁ o - [t

Cosmology 2004 2005 37
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r—Sm(H )COS(H) Cos( Sm(@)

" Hoa, Q2 (1+2)

20,1 Cos(6)+z 2-0, Sm(g/)\/cos (9/)

Q, 1+z

2 Q,
2JQ Q,

+Z
2 Q,
1+z 1+Z

2\’ [Qz+(2 Q,)-(2-Q, )Rz + }

Qz (1+Z)

o2Vl [Qz+(2 Q,)(1-\Q,z+1) |and

Qz(l+ )

2
slide 28 = HO2 (I—QO) — _c_2
aO

2c

Cosmology 2004 2005
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 As we have seen we can integrate for a dust Universe.
We can derive a compact equation also when we
account for a Matter + Radiation Universe. It is
impossible to integrate if we account also for the
cosmological constant or Vacuum Energy. In this case
we must integrate numerically.

* On the other hand we must also remember, as we will
see shortly that the present Universe is a Dust Universe
so that what is needed to the observer are the equations
we are able to integrate.

 Recent results, however, both on the Hubble relation

using Supernovae and on the MWB, with Boomeramg

and WMAP , have shown that the cosmological constant

Is dominant and Q=1 so that we should use such
relations.

Cosmology 2004 2005 39
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Time in Year

Compare with toy Model: Q_=1, Q,=0 & The real thing

t, =0 = The beginning z = o

L

[
ul
a
(@)
i
(@)

1520

5X10

3dZ=——:>
(]+Z) (]+Z) 3

Cosmology 2004 2005

1.4 10" years

Q. _=0.3, Q, =0.9
0, =0.3,Q, =0.7

0, =0.3,Q, =0.0
0, =1.0,Q, =0.0

0, =0.1, 0,=0.9
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el The look back time
H’=H; |:.Q0’R(]+Z)4 + 2, (1+2) +2,, (1+2) + 2, (1+2) +QA}
H:g:agiia:ilog[ﬂ}i,og(;jz_ I _d
a a,adt  dt a, dt I1+z 1+z dt
dt 1 1 I

z  I+zH g (1+z)\/ O (1+2) 42, (1+2) + Dy (1+2) + 2 (142) + 2,
However Q, =, + 2, and | O, , + 0, + 2, +0Q, + Q2 |=1
I also disregard radiation (compute the density ) = O, , =1-Q -,

m

di I
— = =
“ g1+ z)\/[_oo,m (1+2) +[1-9,,-2,](1+2) +2, |
ar__ ! accounting for the — sign
dz H0(1+Z)\/([1+_(20)mz](]+z)2—Z[2+Z]QA)
. I
=1, = .[0

H,(1+2)[1+2,,2](1+2) -z[2+:] 2,

Cosmology 2004 2005 41
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coce Distance — In a different way

| have a standard source emitting a flash L L
of light at the time t,,,. If the photons Flux = ; ; 5> = 5
emitted are N, a telescope of Area A dma’ (t))r’ (1+z) 4nd;
would receive, disregarding expansion 7
and considering the physical distance d = —alt jn dust
isa(t..)r, A/4 n (a(t,.) r)?2 photons. =\ Zr @) r (1 2) for dus

However the Universe is expanding and at 1
the time of detection the area of the Qz+(0Q, 2)[ +(Qoz+1)2}
sphere where the photons arrive as a7 = 2c
expanded to 4 = (a(t,,s) r)?. 0 H, (1 4 z)

That is Nem/Ndetected =Al (a(tobs) r)2 ]

We have to take into account of two more zsmall \J[I1+ 2z =1+—2z
factors: 2

1. Photons are redshifted so that their Ji 5
energy changes by a factor 2¢ QOZ+2.(20 2=z @

1=z=a(t . )/a(t,,) a,r = : =
2. The time between flashes &t at the H, €, (1"'2) H, O, (1"'2)
source increases by a factor (1+z).
This also corresponds to a loss of d :LZ:L
Energy per Unit Area of the telescope. L , ,
The Luminosity distance can be defined
as.

Cosmology 2004 2005 42
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J'r dr
a —
0Jo

1-kr’

Mattig's formula r =

=

Distance

d, =a,r(1+z)

dr cdt (1+z)cdt

= = see slide look back time

1—kr’ a(t) a,

=(1+Z)Cdt=—

cdz

HO\/ |0 (1+2) + 2, (1+2) + Oy (142) + 2 (142) + 2,
cdz

2c

ol ]
" 1=k’ H\/ [1+0,,](1+2) -z 2+z]g)

2c
H,a, Q7 (1+2)

Extension to Matter + Radiation

Q:+(2, —2)[—1+(Qoz+ 1)2}

Qz+(Q,+20, —2){—]+(sz+QR & +22)1);}

Hoao

|2, +402, (2, +2,-1)|(1+z)

Cosmology 2004 2005
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= And with A

.
a, arcsm(r)

r o dr

1= kr?

a arcsin h (r)

Example k =1 and flat 2

k=1

k=0

k=-1
=/

dz

4, = apr(1+2) =<2,

H, kjo \/([1+Qam 2]
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a, arcsin (r) - I

v = SIin- >

And for 3, <0

z cdz

or

’ HO\/ ([1+Qolmz](]+z)2 —Z[2+Z].QA)

c z dz

\aoHo ’ \/([]+Q0]m z:|(1+z)2—z[2+z].QA))

k ¢’

Iuse ‘Qk :—?
a, H,

=1-Q -Q, ;
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And for Q, > 0 - Open

cdz

a, arcsinh(r)= r

or
’ Ho\/([1+Qo,mz](]+z)2—z[2+z]QA)
r=sinh{—— az -
ayH " \/([]+[20’mz](]—l—z)2—Z[Z-I—Z].QA)
\ J
kc’
[ use 0, = =1-0Q -Q,;
0 0
c(]+z)

\/‘?koz dz
M
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700000
600000

500000
400000

300000
200000

100000

Luminosity Distance

Green— Q,;=0.0, Q=01
-Light blue Q,=0.0, Q_=0.3
Blue Q,=0.0,Q, =10
-Red Q,=0.3,Q_=0.7
‘Dark Red Q,=0.2, (2 =0.9 -
-Dark Blue Q,=0.1, (2,=0.5
0 5 10 15 20
Z
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Magnitudes

my, (z)=M +5logd, (z,H, €, ,0,)+25
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Volume - Proper

A=A —a’ (t) {(1 i‘;;z) +7’ (A6?2 + Sin’0 A¢’ )}

Proper Volume .= d {2 (or 472)(a r )2 dl ;

en - em

dl = line of sight distan ce travelled by photons in dz

dlzcdtzc(ﬁ](%](dz):ci il ﬁzcﬁ 4 (1+Z)
z

da a(1+z) a a(l+z) q,
cdt:cl ! dz
H(]+Z)
2 2 5
4y =doeln) 4 4o L@ r)3dz:>dV=d.Q cd,
H(l+z) H(I+z) H(l+z)
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Volume - Comoving

= 0N

dV =dQ(or4r) (aor)2 a,dr

adr:cdtzccola zcc]l:z;aodrzﬁadr:(hrz)ccz =
a a a a
(]+Z)Cda = ¢ da (]—l—z)2 —Jsince da =2 dZ2 S
H 4y H a, (]+Z) H
(]+Z)

Assume matter + A (See earlier Slide)
d,’ cdz
(1+2) H[1+92,, 2] (1+2) -z[2+2] 2,

dV =d Q2
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L Comoving - Dust Universe

v —do_ 9 cdz _

(1+z) H,(I+2)\2,z+1

0,:+(4, _2)[_1+(QOZ+ 1)2}

2c
H, Q7 (1+z2)

-

dL: (]—l—Z)

1
Q+(0,-2)| -1+ + 1)
v =do—! ¢ dz ) 2¢

(]—I-Z)2 H,(1+z)2,z+1 |H, .QOZ(]-FZ)
L J

2
(QOH(QO —2)[—1+(QOZ+ 1)§D
cdz
H}(1+z) Q02 z+1

(1+Z)

dV =dQ
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