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Photoelectric observations made from 1965 to 1973 enable us to obtain fourteen epochs of minimum light. The period of the binary
system appears to be variable. The light curves are analysed using the two similar ellipsoids model and the Roche model. The brighter
component is a main sequence A0-2 star and the secondary a G5-6 subgiant filling its Roche lobe.
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1. INTRODUCTION

VV UMa is an eclipsing binary with a primary main sequence A0-2 star and a period of 0.7 days only.
As pointed out by Struve (1951) this single spectrum spectroscopic system is remarkable since the period
is short for a binary of class A0 and the brighter component is notably smaller and lighter than is usual
for systems of longer period and with the same spectral type.

The light curves reported in this note were obtained at the Merate Observatory during a period starting
from February 1965, as at that time no photoelectric observations of the system were known to have been
made. After some months a three passband photoelectric light curve appeared, derived by Wilson (1965),
who also computed a photometric solution. Wilson assumed a possible extended atmosphere around the
smaller component of the system in order to explain some difficulties experienced in solving the light curves.
It thus seemed appropriate to continue our measurements to prove the Wilson hypothesis and to check the
period, which appears to be variable.

A brief summary of the previous photometric and spectroscopic work on VV UMa is given by Wilson
(1965). During the following years two new solutions were computed, based on Wilson’s photometry: one by
Horak (1966) and the other by Pustylnick (1969). Moreover some visual epochs of minimum were derived by
Braune et al. (1970), Silhan and Oburka (1971) and Diethelm et al. (1973).

2. LIGHT CURVES AND PERIOD

The observations were made through standard B, V filters using a Lallemand photomultiplier at the
102 cm Zeiss reflector at the Merate Observatory. The photocurrent at the beginning was fed into a high
impedance Speedomax and later into a Gardiner type integrator. The variable star was compared to
¢=BD+56°1396, which was also used by Wilson. Three stars in the surrounding field allowed us to check
that the comparison star is constant. The Am’s between ¢ and the check stars have a mean error less than
0701 when the colour difference does not exceed 075 and are a little greater when A(B—V) exceeds 170.
Since the A(B—V) between VV UMa and the comparison is at the most 0723, we can expect a smaller
mean error for the VV UMa measurements. The Am=m,—m,,, were corrected for differential atmospheric
extinction using mean extinction coefficients. The corrections vary between 07007 and 07003 for the B measure-
ments and between 07002 and 07001 for the V ones. By using some standard stars of Praesepe as comparisons
we obtained in the UBV system:

BD +56°1396: V=10"154 B—V =+0746

For the same star Wilson (1968) obtained: V' =10714, B—V = +0747. During twenty-one nights, from
1st February 1965 to 30th April 1973 a total of 776 B and 943 V measurements of VV UMa were obtained.
Most of them were made within a short interval of time in order to reduce a possible seasonal change
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of the light curves; some others were obtained in the V filter only, to derive the times of minimum. The
plotting of all measurements, reduced to the same cycle, proved the system was stable during the observing
interval. The individual magnitudes of the variable are listed in tables 1 and 2 along with the corresponding
heliocentric Julian day.

By fitting a parabola by least squares to the central part of the eclipses, fourteen epochs of minimum
were calculated. No significant difference was found between the values obtained from the B and V light curves.
The average times of minimum are listed in table 3 along with the corresponding mean errors calculated
from separate B and V determinations. To see whether or not the period was varying we have also collected
in this table all times of minimum reported in the literature. We make use of all of them in a least squares
solution with convenient weights. We obtained:

Min I=Hel. JD 2428925.1242 +0.687377219 n
+ 72 496 m.e.

The corresponding residuals are plotted in figure 1 against the cycle number n. It would appear that
the period is variable and that minor fluctuations take place over a wider variation. The observations we
now dispose of are however insufficient for a more detailed study of the period variation.

To calculate the phases for single observations a linear ephemerides derived only from our minima was
shown to be insufficient owing to period variability. We made use therefore of the following light elements
with a parabolic term, which gave mean residuals of +0%002 for the epochs of minimum, comparable to the
observational errors reported in table 3:

Min I=Hel. JD 2438792.4254+0.68737859 n— 148 10~1! n?
+ 1 23 6 me.

Normal light and colour curves are given in figure 2. We obtain for VV UMa:

Max Min I Min II
| 4 10713 10m91 10726
B-V +0.255 +0.34 +0.23

3. PHOTOMETRIC SOLUTIONS

As reported in the studies that were referred to in the introduction, based on Wilson’s photometry,
difficulties have been experienced in solving the light curves of VV UMa. We therefore made an attempt to
see if the difficulties disappeared when new solutions, based on our observations, were calculated by two
different methods.

a) The solutions were carried out in accordance with the Russell model using a computer programme for
differential corrections, and following the Irwin method (Irwin 1947), adapted to a Univac 1106 system.
The computations start with a Fourier analysis of the outside eclipse measurements, whose phase limits,
specified as input data, are calculated with the aid of preliminary elements. The Fourier expansion includes
sine and cosine terms up to the fourth. The non consistent terms, i.e. smaller or equal to the corresponding
mean errors, are dropped and the computation is repeated. The values obtained for the Fourier coefficients of
VV UMa are listed in table 4 along with the corresponding mean errors. The proximity effects appear to be
slight judging by Fourier coefficients; however there are small complications in the light curves, expressed by
As, By, B, terms, as noted by Wilson (1965). The standard deviation of a single measure with respect to the Fourier
representation was 0™005 in both colours. Conventional rectifications in accordance with Russell and Merrill
(1952) were made (phase and light).

The rectified normals, together with an initial solution (for VV UMa we assumed the parameters derived
by Wilson (1965) are the input data for the differential correction programme. Accurate values for the transit
and occultation alfa-functions are calculated following the method given by Jurkevich (1970). The programme
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calculates the differential correction coefficients for a specified number of parameters, then minimizes the
variance of the observations by a least squares method and derives the mean errors for the elements. After the
starting elements have been corrected, the computation is repeated, with sets of new rectified normals,
until the corrections calculated for the parameters become negligible.

At first a five parameters optimisation of the observations of VV UMa during the minima was tried,
but it failed to converge, so we allowed the programme to include a third light in the solution. The
adjustment therefore was carried out for the parameters i, r, 7, L, L, X, simultaneously for both the
minima, disregarding x, since the secondary minimum is shallow. Moreover, as the iterations for the B light
curve led to an x, greater than one, the computations were repeated with values for x,, x; assumed according
to the theory (Grygar et al. 1972).

The rectification constants are listed in table 4 and the derived parameters are given in table 5 (first and
second lines); o is the mean standard deviation, in light units, derived for a ten measurements normal.
The primary minimum appears to be a transit; no consistent solutions could be found assuming the primary
eclipse to be an occultation. The o of the solutions derived with x, as a free parameter and those calculated
with assumed x, are alike. They are however (when reduced to a single measure value) twice the mean
standard deviation derived from the Fourier analysis, which can be assumed to be an indication of the
accuracy of the photometric observations. The third light and the inclination moreover vary remarkably if
different values for x, are assumed, so these parameters appear to be strongly correlated. In addition no
spectroscopic evidence is known of circumstellar matter around the less massive component which can
account for additional lights of about 17% and 24% respectively of the B and V lights of the two components.
We can also suppose that the third light could come from a close companion or from a suitably aligned
foreground star, but in our opinion the correlation found between Ls, i, x,, makes the solutions seem doubtful.

Finally further solutions were calculated using the Irwin method, allowing only the elements i,, r,, 7, to
be adjusted, while L, was kept fixed and no third light was included. A set of values for L, was tested,
assuming L;+L,=1, and for each solution the corresponding o evaluated. The iterations converge, while
they do not when L, is also allowed to vary, as reported above. The best solutions are listed in table 5
(third and fourth lines). The same results are obtained if the computations are repeated with fixed values
for i, allowing I, r,, 75 to vary. However if we compare these results with the solutions obtained including
a third light, given in table 5, we note that the representation of the light curves is worse.

b) The dissimilar shapes of the two components can be accounted for by the Wilson and Devinney (1971)
model, where the components are represented as Roche figures of equilibrium and a more reliable description
of the light distribution over the components and of their mutual irradiation is adopted. In order to save
computing time, after a reduction of the measurements to the phase interval 0°-180°, normal points were
formed of twenty measurements each, and weights inversely proportional to the light level were assigned.
At first the observed light curves were fitted with theoretical curves calculated using the light curve programme
of Wilson and Devinney (1971), varying only few parameters at once, by a grid research process, to see
what set or sets of parameters improve the representation of the observations significantly and what parameters
can be discarded. For the cooler component the fitting of the out-eclipse measurements gives albedoes A4,
approximately 0.3 and 0.4 respectively for B and V measurements, whilst for the hotter star 4A;=1 can
be assumed (subscript 1 refers to the hotter and larger star, indicated by subscript g in the Russell notation).
The darkening coefficient x, has no influence on the solutions, on the contrary x; has some effect, but we
gave to x; and x, the same values assumed in the Irwin solutions referred to above. In the same way for
the gravity darkening exponents we put g, =g, =1 as theoretically expected for stars with radiative envelope.
The third light then appeared to be inconsistent. According to the spectral type of the primary and the depths
of the minima freed from radiative interactions, we assumed for the polar effective temperature of the
components the values T; =9750° K, T, =5600° K. After a reasonable fit for the entire light curves had been
obtained, least squares solutions using the Wilson and Devinney differential correction programme were
calculated (using the programme in mode 0).

© European Southern Observatory * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1977A%26AS...27..285B

5B.

FIO77AGAS. ~.27°7 .

288 P. Broglia and P. Conconi

From the spectroscopic mass-function f(M)=0.015 © and the spectral type AOV estimated by Struve
(1950), or A2V given by Hill et al. (1975) and the inclination reported in table 5, a mass-ratio in the
range 0.19-0.23 can be evaluated. The parameters estimated from the best fitting light curves were the input
data for the differential corrections programme. We allowed the programme only to adjust the parameters:
q, Q1, Q,, i, Ly, L,, separately for each light curve. It appeared that g increases beyond 0.23 and that the
cooler component tends to overcome its Roche limit; thus the solutions were repeated with ¢=0.23 and
with Q, set to the critical value for filling the Roche lobe, employing the Wilson and Devinney mode
2 approach. The elements so derived are listed in table 6 (first and second line); o is the standard deviation,
in light units, for a twenty points normal and N is the number of normals considered in the solutions.

During the search by trial and error of the preliminary solutions by comparing synthetic to the observed
light curves, a further minimum for the sum of the squares of the residuals was obtained, which was about
q=0.4. In these solutions L3 also appeared to be negligible. Then by means of the differential correction
programme improved sets of elements were derived again. These are listed in the last two lines of table 6.
The adjusted parameters are identified by their respective probable errors, whilst the errors of the radii were
computed from those in Q; and Q.

4. DISCUSSION

In his study of VV UMa Wilson (1965) supposed the existence of an atmosphere around the cooler
component because in the nomographic solution the y curve and the depth line did not intersect for any
value of the limb darkening coefficient and because of the different depths p, of the eclipse in B and V.
However an intersection could almost be obtained for x=0.0, but without a satisfactory representation of
the observations in the upper part of the minimum. The shoulder discrepancy can be accounted for by
assuming an atmosphere around the cooler component. The solutions however give a value for r, greater in
blue than in ultraviolet as though the opacity of the atmosphere decreases instead of increasing towards
shorter wavelengths. The alternative hypothesis, that a third light is present in the system, was disregarded
by Wilson who has come to the conclusion that the Russell model is inadequate to represent VV UMa.

Pustylnick (1969) also assumed an atmosphere around the cooler component and calculated some models
for the atmosphere. On the basis of Wilson’s photometry he derived some solutions, which however he con-
sidered to be quite unsatisfactory and provisional. The values for r; increase from longer to shorter wavelengths,
but the thickness of the atmosphere decreases when its temperature rises, a trend opposite to that which his
model would lead us to expect.

A solution has been obtained by Horak (1966), assuming the primary to be a sphere and the companion
an ellipsoid. The Wilson light curves were represented satisfactorily with the sphere-ellipsoid model, without
resorting to a third light or to an extended atmosphere. Three different rectification methods were tried.
The elements i, R, b, ¢, were the same in all three cases, but the lights of the two stars L; and L, and the
lengths a of the semi-major axis of the secondary component vary with the different rectifications; the
semiaxis a moreover decreases when the wavelength increases.

All the o derived in the solutions listed in the tables 5 and 6 (after converting them into values for a
single measure) appear to be at least twice as much the observational error o =07005 deduced from the
Fourier analysis. Serious difficulties appear moreover when deriving the solutions in accordance with the
Russell model, in particular the iterations do not converge if the parameters L,, r, r, i, are adjusted
simultaneously, but they converge if L, or i are kept fixed. If we also correct for L; a conspicuous third
light appears which is unreliable, even if the presence of a very close foreground star cannot be ruled out.
This may be because a spectroscopic evidence of such a conspicuous light is lacking or because the observed
light curves are stable from a season to the other and do not show humps or notable asymmetries, apart
from the Fourier small sinus-perturbations, or because no third light is required in the solutions calculated
by means of the Wilson and Devinney model. In our opinion the above difficulties mean that the two
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similar ellipsoid model is inadequate to represent VV UMa. The solutions computed using the Wilson and
Devinney programmes indeed show definitely that the secondary component is rather dissimilar to the
primary star.

The representation by means of the Roche figures gives rise however to further difficulty. Starting from
the spectroscopic mass function we obtain the result g=0.23 and the cooler component fills its Roche lobe,
but the solutions even tend to overfill the Roche limit. The alternative solutions give ¢=0.40 and improve
the o of the B light curve by 80% but the o of the ¥V measures only by 10%. Due to limitations in the
computing time we were however unable to compute solutions for values of g covering a larger range and
to test if at g=0.40 it is a local minimum or a true minimum for o. It is disappointing that the “best”
photometric mass-ratio is very different from the spectroscopic value. Since the mass-ratio g=0.40 gives
an unlikely mass 0.47 © for the primary, which according to two independent spectral classifications is a
main-sequence AQ-2 star, we believe the solutions corresponding to g=0.23 are more reliable. From the
parameters thus derived and the spectral type of the primary, a value G5-6 can be inferred for the cooler
component. The ratios J,/J's of the average surface brightnesses freed from radiative interactions by means
of the relative luminous efficiencies, deduced from the reflection coefficients (table 4), also give the same
value. From the solutions, moreover, the secondary component appears to be nearly three magnitudes
fainter than the primary; with spectral type G5-6 it is clearly above the main sequence. From the spectroscopic
orbit recomputed by Lucy and Sweeney (1971) and the elements listed in table 6 for ¢=0.23 in solar units we

obtain the results: ;o5 R, =158 my =044 R,=123

In conclusion the short-period system VV UMa appears to be a semi-detached system with a secondary
subgiant entirely filling its Roche lobe.
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Two-Colour Photometry and Elements of VV UMa
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Figure 1 O-C diagram obtained by means of a linear ephemerides from all the times of minimum.
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Figure 2 Light and colour curves of VV UMa. The normal points are the mean of ten single observations.
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