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ABSTRACT 

In the last two decades a new window for ground-based high energy astrophysics has been opened. This explores the 
energy band from about 100 GeV to 10 TeV by making use of Imaging Atmospheric Cherenkov Telescopes (IACTs). 
Research in Very High Energy (VHE) gamma-ray astronomy is progressing rapidly and, thanks to the newest facilities 
such as MAGIC, HESS and VERITAS, astronomers and particle physicists are obtaining data with far-reaching 
implications for theoretical models.  

The Cherenkov Telescope Array (CTA) is the ambitious international next-generation facility for gamma-ray astronomy 
and astrophysics that aims to provide a sensitivity of a factor of 10 higher  than current instruments, extend the energy 
band coverage from below 50 GeV to above 100 TeV, and improve significantly the energy and angular resolution to 
allow precise imaging, photometry and spectroscopy of sources. To achieve this, an extended array composed of nearly 
100 telescopes of large, medium and small dimensions is under development. Those telescopes will be optimized to 
cover the low, intermediate and high energy regimes, respectively.  

In this paper, we focus our attention on the Small Size Telescopes (SSTs): these will be installed on the CTA southern 
hemisphere site and will cover an area of up to 10 km2. The energy range over which the SSTs will be sensitive is from 
around 1 TeV to several hundreds of TeV. The status of the optical and mechanical designs of these telescopes is 
presented and discussed. Comments are also made on the focal surface instruments under development for the SSTs. 
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1. INTRODUCTION 
 
With the advent of ground-based IACTs in late 1980’s, observations of VHE gamma-rays became possible and, since the 
discovery of the TeV emission from the Crab Nebula by Whipple in 1989 [1], this astronomy has achieved exceptional 
results. More then 130 TeV sources, both galactic and extragalactic, have been detected to date (see Figure 1).  

The international communities working in TeV astronomy in Europe, America and Japan are now involved in the study 
of a huge array of Cherenkov telescopes called the Cherenkov Telescope Array [2] observatory. CTA aims to (a) 
increase sensitivity by another order of magnitude for deep observations, (b) boost significantly the detection area and 
hence the detection rates, particularly important for transient phenomena and at the highest energies, (c) improve the 
angular resolution and hence the ability to resolve the morphology of extended sources, (d) provide wide and uniform 
energy coverage from some 10 GeV to beyond 100 TeV in the energy of the photons, and (e) enhance the all sky survey 
capability, the monitoring capability and the flexibility of operation.  
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stresses induced in the glass sheet as it is moulded are potentially too high and cause the mirror to have a short lifetime. 
Alternatives are therefore under consideration. 
 

2.4 Camera designs 

The attraction of the SST-DC option is not only the wealth of experience with Davies-Cotton telescopes that exists 
within past and present IACTs experiments but also the fact that, for appropriately chosen telescope parameters, the 
cameras of the SST-DC and the MST could be similar, leading to some economies of scale. In particular, we choose to 
use the same 1.5’’ PMTs for the MST and SST, giving pixels of physical diameter d = 50 mm. The required angular 
pixel pitch for the SST is 0.25°. Assuming a telescope field-of-view of 10°, the camera should host about 1459 pixels 
within a diameter of about 2.05 m and have a mass of about 1600 kg. More details on the developments on going for the 
MST camera can be found in [6][7]. 

 

3. DUAL-MIRROR TELESCOPES: THE SCHWARZSCHILD-COUDER DESIGN 
 

We are also investigating the use of dual mirror SSTs (SST-DM). As has previously been demonstrated [8], dual mirror 
Schwarzschild-Couder telescopes allow better correction of aberrations at large field angles and hence the construction 
of telescopes with a smaller focal ratio. This implies that, for a given primary mirror and angular pixel size, the physical 
pixels are smaller. The cameras for these telescopes can thus be based on multi-anode PMTs (MAPMTs) or Silicon PMs 
(SiPMs) and can be considerably cheaper than those envisioned for the SST-DC. The SST group within CTA has 
designed dual-mirror telescopes which have the potential to provide the required optical performance and allow 
exploitation of these technologies. For similar reasons, groups working on the development of the MST are also pursuing 
this option [9]. 

The Italian ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) project run by INAF (Istituto Nazionale di 
AstroFisica) is producing a complete design of a SST-DM [10]. Rapid progress is being made by this group towards the 
construction of an end-to-end prototype telescope composed of the telescope structure itself, the mirrors, the camera 
based upon SiPMs and the control software. 

A second telescope is being prototyped in France as part of the GATE (GAmma-ray Telescope Elements) project [11]. It 
is based on the optical design produced in the UK in Durham, as was the preliminary mechanical design. UK, US and 
Japanese groups within CTA are designing a further camera for the dual mirror SST, the Compact High-Energy Camera 
(CHEC), based on MAPMTs.  

In the following, the optics and mechanical structure of the ASTRI and GATE telescopes are described. A further section 
focuses on the two cameras. Only the telescope and camera that will give the best performances versus cost will then be 
adopted for the final implementation of the CTA-SST array. 

 
3.1 Optical design performance 

Matching the physical size of the pixels offered by MAPMTs or SiPMs sensors (a few millimetres) to the required 
angular pixel size of the SST implies that the focal length of the telescope F ~ 2 m. Ensuring sufficient collection area to 
obtain efficient triggering in the SST energy range, that is, a primary mirror of diameter about 4 m, then requires that the 
telescope's focal ratio be about 0.5.  

The proposed designs have the Schwarzschild-Couder configuration, optimized using the commercial software ZEMAX, 
ensuring a light concentration higher than 80% within the dimension of the pixels over a wide field. The mirrors profiles 
are aspheric with substantial deviations from the main spherical component (see Figure 6 bottom panels). The ASTRI 
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and UK designs somewhat differ a bit one to each other; hereinafter we describe the ASTRI design as a reference. This 
design has been optimized taking into account also a realistic way to implement the telescope, such as the segmentation 
of the primary mirror M1 and the arrangement of detection units into the detector. The optical system is shown in the top 
left panel of Figure 6. It has a plate scale of 37.5 mm/°, a pixel size of approximately 0.17° and an equivalent focal 
length of 2150 mm. This setup delivers a corrected field of view up to 9.6° in diameter as shown by the enclosed energy 
curves plotted in Figure 6 (top right panel). Concerning the throughput, a mean value of the effective area of about 6.5 
m2 is achieved, taking into account: the segmentation of the primary mirror, the obscuration of the secondary mirror, the 
obscuration of the detector, the reflectivity of the optical surfaces as a function of the energy and incident angle, the 
losses due to the detector's protection window and finally the efficiency of the detector as a function of the incident 
angles (ranging from 25° to 72°). In Table 1 we summarize the geometry of the optical system: the resulting telescope is 
compact, having an M1 diameter of 4 m and a primary-to-secondary distance of 3 m. 

 

  

  
Figure 6. (Top-left panel) the Schwarzschild-Couder optical layout adopted for the ASTRI end-to-end prototype. (Top-right panel) the 

fraction of the energy from a point source contained within a square as a function of the half-width of the square for various field 
angles. (Bottom panels) radial profiles of the primary M1 (left) and secondary M2 (right) mirrors, and deviations from sphere. 

 

Table 1. Main geometrical dimensions of the ASTRI optical system. 

ELEMENT NAME DIAMETER  
[mm] 

RADIUS OF CURVATURE
[mm] 

SHAPE DISTANCE TO… 
[mm] 

M1 4306 -8223 Even asphere M2: 3108.4  
M2 1800 2180 Even asphere DET: 519.6  
DET (side) 360 1000 -- -- 
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arms support the transverse components of the secondary mirror’s weight as they vary with the orientation of the 
telescope.  

The azimuth drive is located at the base of the tower and is composed of two pinions, driven by electric motors, that 
couple with a rim gear. Axially pre-loaded ball bearings complete the azimuth assembly. The linear actuator, which 
drives the elevation, attaches to the tower at its lower and the dish structure at its upper end. The actuator consists of a 
preloaded ball screw driven through a gearbox by an electric motor. The orientation of the telescope is determined using 
absolute encoders located on each of the azimuth and altitude axes. Safety is ensured during movement by a system of 
software and electro-mechanical switches.  

Also in this case, FEA has been used to evaluate the performance of the system. The lowest frequency eigenmode of the 
oscillations of the dish and mast is 8.5 Hz. FEA has also been carried out to determine the effects on the telescope of 
temperature gradients. This indicates that temperature differences of ±1°C from the base of the mast and its central tube 
to the top of the mast are inconsequential. However, similar temperature shifts across the dish support structure can lead 
to significant contributions to the misalignment of the primary mirror segments. Temperature variations in the tower 
structure can also lead to noticeable effects on the telescope pointing. Studies to understand the likely magnitude of these 
effects in operation are underway, as are strategies for dealing with any residual problems in these areas. 

 

The GATE design 

The main elements of the GATE structure are, again, the foundation on which the tower/fork structure is mounted via the 
azimuth drive system. The version shown has a shallow fork structure for which two counter weights are needed, 
mounted exterior to the fork. Also under study is a design with a shorter tower and a deeper fork, allowing a single 
counterweight to be mounted centrally. In both cases, the fork is fastened via the azimuth bearings and drive to the 
primary dish structure, which carries the secondary mirror support and the camera. Aluminum and carbon fiber have also 
been considered, but finally not selected to optimize costs and easiness of manufacturing and mounting.  

The drive systems under study consist either of crown gears which are driven by pinions connected to electric motors via 
a gearbox, or worm gears, again driven by electric motors. 

FEA has determined that the lowest frequency eigenmodes of the oscillations of the telescope involve transverse motion 
of the secondary with respect to the primary and are about 5 Hz. Rotational eigenmodes of oscillation have lowest 
frequencies of about 12 Hz. These values refer to a preliminary design not yet optimized. 

 

3.3 Mirror designs 

For the ASTRI telescope it is proposed to construct the primary mirror as a set of 18 hexagonal-shaped panels having 
850 mm face-to-face dimension. Three different types of mirror profiles are necessary to reproduce the M1 profile. 
GATE will exploit petal-shaped segments. The number and dimension of these is still under investigation. It is hoped 
that only two types of segment will be required. For both telescopes, the aim is to build a monolithic secondary mirror. 
More details about the technology under development can be found in [12]. 

 

 

3.4 Camera designs 

The ASTRI camera based on SiPM sensors 

The ASTRI camera design uses SiPMs as photosensors. The pixels contain 3600 cells, each of which is an avalanche 
photodiode operated in quenched Geiger mode. These cells are of dimensions 50x50 μm2, giving a fill factor of 70%. 
The particular device chosen is the Hamamatsu S11828-334 monolithic multi-pixel SiPM consisting of 4x4 pixels of 
roughly 3x3 mm2. Four of these are grouped together to form one pixel of physical size 6.2x6.2 mm2, matching the 
required angular size. As is shown in the top left panel of Figure 8, four of the Hamamatsu devices are put together to 
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