

Error Budget Tree for the ASTRI prototype: structure and mirrors

 Prepared by:
 Name:
 Rodolfo Canestrari
 Signature:
 Date:
 04/11/2011

 Paolo Conconi
 Enrico Giro
 6abriele Rodeghiero
 02/04/2012

TABLE OF CONTENTS

DIS	TRIB	UTION LIST	3
DO	CUM	ENT HISTORY	4
LIS	T OF	ACRONYMS	5
AP	PLIC	ABLE DOCUMENTS	5
RE	FERE	NCE DOCUMENTS	5
1.	INTF	RODUCTION	6
2.	DEF	INITIONS	7
	2.1	Reference system	7
	2.2	Sensitivity	8
3.	ERR	OR BUDGET TREE RELATED TO M1	9
4.	ERR	OR BUDGET TREE RELATED TO M2	11
	4.1	Profile errors	11
	4.2	Alignment errors	11
5.	ERR	OR BUDGET TREE RELATED TO CAM	13
	5.1	Profile errors	13
	5.2	Alignment errors	13

Code: ASTRI-SPEC-OAB-3100-002

Issue: 2

DATE 02/04/2012 Page: 3

DISTRIBUTION LIST

Enrico Giro	enrico.giro@oapd.inaf.it
Stefano Vercellone	stefano@ifc.inaf.it
Rodolfo Canestrari	rodolfo.canestrari@brera.inaf.it
Luca Stringhetti	luca@iasf-milano.inaf.it
Mauro Fiorini	fiorini@lambrate.inaf.it
Giorgio Toso	giorgio.toso@brera.inaf.it
Giancarlo Parodi	giancarlo.parodi@bcv.it
Paolo Conconi	conconi_paolo@yahoo.it
Pierfrancesco Rossettini	p.rossettini@tomelleri.com
Giovanni Pareschi	giovanni.pareschi@brera.inaf.it

Code: ASTRI-SPEC-OAB-3100-002

DOCUMENT HISTORY

Version	Date	Modification
1	04/11/2011	first version
2	02/04/2012	Add chapter on Camera

	ASTRI - Astrofisi Tecnolog	ica co Jia Re	on \$ pli	Spec cant	chi a e Italiar	a	
Code: ASTRI-SPEC	-OAB-3100-002	Issue:	2	DATE	02/04/2012	Page:	5

LIST OF ACRONYMS

- PV Peak to Valley
- rms Root Mean Square

APPLICABLE DOCUMENTS

[AD1]

REFERENCE DOCUMENTS

[RD1] ASTRI-IR-OAB-3100-009 "The optical layout of the ASTRI prototype: 4 meter Schwarzschild-Couder Cherenkov telescope for CTA with 10° of field of view"

[RD2]

	ASTRI - Astrofisi Tecnolog	ica co Jia Re	on : epli	Spec cant	chi a e Italiar	ıa	
Code: ASTRI-SPEC	-OAB-3100-002	Issue:	2	DATE	02/04/2012	Page:	6

1. INTRODUCTION

This document describes the Error Budget Tree to be used for the design and verification of the structure and mirrors subsystems of the ASTRI telescope prototype.

This document is a living document. This means that the numbers adopted for each parameter can be subject of changes depending from the outcomes of the structural analyses and/or technological developments.

-3100-002	Issue:	2	DATE	02/04/2012	Page:	7

2. **DEFINITIONS**

2.1 Reference system

The reference system is defined as in figure 1, if not explicitly stated. The z axis is the optical axis and it points toward the M2.

According to the M1 segments numeration, we give the nominal position of the centers of each hexagon. The numbers are in mm unit.

N° dell'esagono	Х	Y	Z
1	856.485	0.0	44.229
2	428.242	741.378	44.229
3	-428.242	741.378	44.229
4	-856.485	0	44.229
5	-428.242	-741.378	44.229
6	428.242	-741.378	44.229
7	1280.522	738.775	129.652
8	0.0	1478.620	129.652
9	-1280.522	739.310	129.652
10	-1280.522	-739.319	129.652
11	0.0	-1478.620	129.652
12	1280.522	-739.310	129.652
13	1704.850	0.0	170.581
14	852.425	1476.443	170.581
15	-852.425	1476.443	170.581
16	-1704.850	0.0	170.581
17	-852.425	-1476.443	170.581
18	852.425	-1476.443	170.581

The segments numbered 1, 8 and 13 are used as reference and they correspond to the color index green, light blue and yellow respectively.

All information contained in this document is property of INAF. All rights reserved.

Code: ASTRI-SPEC-OAB-3100-002

2.2 Sensitivity

As described in [RD1] the optical layout of the ASTRI prototype has the energy concentration (ensquared energy) greater then 80% into the Cherenkov pixels along the entire field of view.

This definition is meaningful taking into account the entire telescope optical design and is not referred to the single mirror segments, like in the Davies-Cotton case. Considering this fact the Error Budget Tree hereafter described can be compiled in such a way the global effect of all contributions keeps the energy concentration (ensquared energy) better then (or equal to) 70%.

This can be translated in a PV error budget equal to 120 μm and slope error budget equal to 60" rms.

Code: ASTRI-SPEC-OAB-3100-002

Issue: 2 DATE

DATE 02/04/2012 Page: 9

3. ERROR BUDGET TREE RELATED TO M1

Let's consider the secondary mirror M2 being monolithic, infinitely rigid and having the nominal profile.

		Value		Units	Comments
1. M1 segmen	ts profile errors				
1.1. Manufa	acturing				
	a. Mold	30		μm PV	It comes from FLABEG, no/very poor control on it.
		10		" rms	The rms is sampled at least with a grid of 25 mm of pitch.
	b. Replication process	50		μm PV	It comes from FLABEG, limited control on it.
		10		" rms	The rms is sampled at least with a grid of 25 mm of pitch.
	c. Glass cutting		6	ι	Axial (normal to the surface on the hexagon center) rotation of the glass profile wrt the nominal one.
					It is equivalent to 0.87 mm over the length of the hexagonal side.
	d. Integration	TBD TBD		μm PV " rms	Contribution of the cold shaping step (could be also improvements)
	SUBTOTAL	58		μm PV	Quadratic propagation
			6	6	
1.2. Structu	ural				1
	a. Mounting	40		μm PV	Contribution of the mounting supports (e.g. gluing of the interfaces,)
		2		" rms	The shape will be modified only locally.
	b. Gravity	30		μm PV	Contribution of the normal gravity
		TBC		" rms	
	c. Operative wind	30		μm PV	Contribution of the operative wind
		TBC		" rms	
	d. Operative temp.	1		μm PV	Homogeneous temperature shift up to ±20°C
	SUB TOTAL	58		μm PV	Quadratic propagation
GRAND TOT	TAL	82		μm PV	Error budget in quadratic propagation.
2. M1 segmen	ts alignment errors				
2.1 Transla	ations			r	Γ
	a. x	±2		mm	These values are referred to the
	b. y	±2		mm	hexagons as reported in Table 1.
	C. Z	±4		mm	

)	Code: ASTI	RI-SPEC-	OAB-3100-002		Issue:	2	DATE	02/04/2012	Page:	10
	2.2 Rotations									
		a. z'		±4	ſ	z z	is defined (optical enter of th	d as the axis pa axis) passing t e hexagons.	rallel to th hrough th	ne ne
	2.3 Tilts									
		a. x		±30	**					
		b. y		±30	**					

Not appreciable degradation (i.e. <5%) of the ensquared energy is reported within these values. There is no need to actively correct with actuators within these ranges. However, these values shall be used to define the accuracy and the range of the actuators.

Code: ASTRI-SPEC-OAB-3100-002

4. ERROR BUDGET TREE RELATED TO M2

4.1 Profile errors

Let's consider now the M1 segments being perfectly aligned, infinitely rigid (both the mirrors themselves and the telescope structure) and having the nominal profile.

We consider now the contributions coming from a not perfect secondary mirror.

4.2 Alignment errors

The positioning errors along (x, y) and the relative tilts translate almost completely in pointing errors of the telescope (the contribution to the ensquared energy is negligible).

The error along z is a defocusing of the telescope and can be correct adjusting the 3 actuators of M2.

			Value	Units	Comments
3. M2	profile errors				
3.1	1. Manufacturing		1		
	a.	Mold	120	μm PV	It comes from FLABEG, no/very poor control on it.
			40	" rms	The rms is sampled at least with a grid of 25 mm of pitch.
	b.	Replication process	200	μm PV	It comes from FLABEG, limited control on it.
			40	" rms	The rms is sampled at least with a grid of 25 mm of pitch.
	C.	Glass cutting	n.a.	¢	Axial (normal to the surface on the hexagon center) rotation of the glass profile wrt the nominal one.
	d.	Integration	TBD TBD	μm PV '' rms	Contribution of the cold shaping step (could be also improvements)
	Su	BTOTAL	217	μm PV	Quadratic propagation
			(54)	μm PV	(calculated taking into account the demagnification factor, equal to 4)
3.2	2. Structural				
	a.	Mounting	40	μm PV	Contribution of the mounting supports (e.g. gluing of the interfaces,)
			2	" rms	The shape will be modified only locally.
	b.	Gravity	120	μm PV	Contribution of the normal gravity
			TBC	" rms	
	с.	Operative wind	120	μm PV	Contribution of the operative wind
			TBC	" rms	
	d.	Operative temp.	4	μm PV	Homogeneous temperature shift up to ±20°C
	Su	BTOTAL	174	μm PV	Quadratic propagation
			(44)		(calculated taking into account the
	All infor	mation contained in this docum	ent is property	of INAF. A	Il rights reserved.

Tecnologia Replicante Italiana

ASTRI - Astrofisica con Specchi a Tecnologia Replicante Italiana								
\geq	Code: ASTRI-SPEC	-OAB-3100-002	Issue:	2 DATE	02/04/2012	Page:		
			μm PV	demagnifi	ication factor, e	qual to 4)		
G	GRAND TOTAL	278	μm PV	Error l propagati	budget in on.	quadrati		
		(69)	μm PV	(calculate demagnifi	d taking into a ication factor, e	ccount the qual to 4)		
4. M	2 alignment errors							
4	1.1 Translations							
	a. x	±3	mm	This introc modeled v	duces pointing e vith T-points. (1	errors to be mm = 38		
	b. y	±3	mm	pointing er	ror)			
	C. Z	±4	mm	Relative to	M1			
		±1	mm	Relative to	DET			
4	.2 Rotations							
	a. z	n.a.	6					
4	.3 Tilts							
	a. x	10	í	The tilts do the teleso indicated y	o not constrain th cope structure	ne design o up to the		
	b. y	10	£	Obliviously errors to be	v, this introduct	es pointing		
						-		

Code: ASTRI-SPEC-OAB-3100-002 Issu	sue: 2	DATE	02/04/2012	Page:	13
------------------------------------	--------	------	------------	-------	----

5. ERROR BUDGET TREE RELATED TO CAM

5.1 Profile errors

Let's consider now the M1 segments and M2 monolithic mirror perfectly aligned, infinitely rigid (both the mirrors themselves and the telescope structure) and having the nominal profile.

We consider now the contributions coming from a not perfect camera mounting.

5.2 Alignment errors

The positioning errors along (x, y) translate almost completely in pointing errors of the telescope (the contribution to the ensquared energy is negligible). Nevertheless, we fix the maximum displacements to ±5.5 mm along each axis (x, y).

Tilts errors along (x, y) of the order of 20 arcmin for each axes can be tolerable.

The error along z is a defocusing of the telescope and is correct adjusting the 3 actuators of M2.