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Time series analysis
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Time series

✤ 1-d sequence

✤ Many obvious 
examples

✤ Large literature on 
many fields

z(t)orh(t)
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Time series and frequency

✤ Time is important

✤ Different representation

✤ Frequency domain

✤ Fourier analysis

✤ Heat conduction       discontinuity

Joseph Fourier (1768-1830)
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✤ Fourier transform equations

✤ h(t) and H(f): two representations 
of the same equation

✤ Linear transformation

✤ Decomposition on sine waves

✤ sin(2πf0t)  ⇔  δ(f-f0)

✤ Invariant to time shift

Fourier transform

h(t) H(f)
Real H(-f) = [H(f)]*
Even H(-f) = H(f) [even]
Odd H(-f) = -H(f) [odd]

Real & Even H(f) is real and even
Real & Odd H(f) is imaginary and odd

h(t) =
� ⇥

�⇥
H(f)e2�iftdf

H(f) =
� ⇥

�⇥
h(t)e�2�iftdt
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✤ Correlation

✤ Autocorrelation

✤ Parseval’s theorem

Other basic properties

Autocorrelation is the fourier 
transform of the power spectrum

Corr(g, h) =
� ⇤

�⇤
g(t + �)h(�)d� �⇥ G(f)H⇥(f)

� ⇥

�⇥
|h(t)|2dt =

� ⇥

�⇥
|H(f)|2df Total power

in the signal

Corr(g, g) =
� ⇥

�⇥
g(t + �)g(�)d� �⇥ |G(f)|2
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✤ Power spectral density (PSD)

✤ One-sided

✤ If h(t) is real

One-sided vs. two-sided

Ph(f) ⇥ |H(f)|2 + |H(�f)|2

Ph(f) � |H(f)|2 �⇥ < f <⇥

0 � f <⇥

Ph(f) � 2|H(f)|2
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✤ Fourier transform: decomposition on a base of sinusoids

✤ Sum of correlation with sinusoids

✤ h(t) extends from -∞ to +∞

✤ PSD over frequency gives signal power

✤ We have real signals...

✤ ... but we don’t have either continuous or infinite signals

Recap
h(t) =

� ⇥

�⇥
H(f)e2�iftdf

H(f) =
� ⇥

�⇥
h(t)e�2�iftdt
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✤ Sampled function: xk (k=1,...,N), total length T    [N numbers]

✤ Here times are tk = kT/N, frequencies are j/T

✤ Time step: ∆T = T/N 

✤ Frequency step: ∆ν = 1/T

Discrete Fourier transform

aj =
N�1�

k=0

xke2�ijk/N (j=-N/2,...,N/2-1)Discrete FT

xk =
1
N

N/2�1�

j=�N/2

aje
�2�ijk/N

Inverse FT
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✤ Frequency resolution: ∆ν = 1/T

✤ Time resolution: T (length of the sample of N measurements)

✤ The longer your measurement, the higher your frequency resolution

✤ This is important in time-frequency analysis (non-stationary signals)

✤ Formal version of UP much more complex

Uncertainty principle (I)
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✤ N numbers in input - N numbers in output (for real signals H(-f) = 
[H(f)]*, but values are complex)

✤ Highest frequency: 

✤ Critical sampling of a sine wave is two sample points per cycle

✤ If you sample less, you get the wrong period (wait..)

✤ Notice that H(f) is complex for real input

✤ Also: 

No loss of information

Nyquist frequency
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✤ If we ignore the phases of the aj’s:                                                (j=0,...,N/2)

✤ Again, analogous to hearing system

Power density spectrum

P =
2

Nphot
|a|2
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✤ An example: (continuous) transform of a one-sided exponential

Power density spectrum

h(t) = e��t H(f) =
1

2⇥if + �
� 1

i⇤ + �

P (f) = |H(f)|2 =
1

⇥2 + �2
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✤ Non-linear transformation

✤ If independent (random noise added), 
cross terms average out to zero

Power density spectrum

xk = yk + zk

aj = bj + cj

|aj |2 = |bj |2 + |cj |2 + crossterms
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✤ How can one connect continuous and 
discrete FT?

✤ Continuous time series:   h(t) [-∞,+∞]

✤ Discrete time series:        hk  [k=0, ... , N-1]

Finite duration and sampling

a(�) =
� ⇥

�⇥
h(t)e�2⇥i�tdt
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✤ We multiply

✤ w(t): window function

✤ i(t): sampling function

Finite duration and sampling

i(t) =
⇥�

k=�⇥
�(t� kT

N
)

w(t) =
0 otherwise{ 1 0 � t < T

hk = h(t)w(t)i(t)
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Finite duration and sampling
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✤ The transform of the product of two functions is the convolution of 
the transforms

Convolution theorem: windows

x(t)y(t)⌅⇧ a(⇥) ⇥ b(⇥) ⇤
� ⇥

�⇥
a(µ)b(⇥ � µ)dµ

|W (�)|2 �
����
⇥ ⇥

�⇥
w(t)e�2⇥�T

����
2

=
����
sin ⇥�T

⇥�

����
2

Broadening of peaks
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✤ The transform of the product of two functions is the convolution of 
the transforms

✤ Infinite series of δ functions, with spacing   N/T = 2 νNyq

Convolution theorem: sampling

>νNyq!

I(⇥) ⇥
⌅ ⇥

�⇥
i(t)e�2⇥�itdt =

N

T

⇥⇤

⇤=�⇥
�

�
⇥ � ⌃

N

T

⇥
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✤ FT is symmetric in frequency for a real signal

✤ Alias repeats it every 2νNyq

✤ Problem is signal above νNyq

Aliasing
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✤ WINDOW: broadening & sidebands

✤ SAMPLING: aliasing

✤ Aliasing not such a big problem for high-energy astronomy

✤ Binning, not sampling

✤ Suppression of high frequencies

Summary of discrete FT effects
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✤ Window effect is a problem:

✦ It broadens delta peaks

✦ It flattens the slopes of noise components (sidelobes)

✤ The longer the observation, the better

Window effects
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✤ We can use different windows

✤ We lose some signal

Window carpentry

Window ∆ω A p Function
Boxcar

Hamming
Gaussian
Hanning
Blackman

0.89 -13db 2 1
1.36 -43db 2 0.54+0.46 cos(2πt)
1.55 -55db 2 exp(-18t2)
1.44 -32db 5 cos2(πt)
1.68 -58db 5 0.42+0.5cos(2πt)+0.08 cos(4πt)
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✤ A power spectrum is in units of Hz-1

✤ It scales with the square of the intensity: variance

✤ If we divide by the square of the intensity, we get the fractional 
variance (squared rms)

✤ The square root of its integral is the total fractional rms

✤ Useful to compare amount of variability

Power spectra units
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✤ Multiply the power spectrum by the frequency

✤ Obtain a νPν representation

✤ Useful to see where the power per decade peaks

✤ Characteristic frequencies
  are peaks in νPν   (later)

Power spectrum plots
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Timing methods
in X-ray Astronomy
Tomaso Belloni (INAF - Osservatorio Astronomico di Brera)
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Poisson noise effects

✤ Counting detector

✤ Counting noise

✤ Background negligible

✤ Independent arrival times

✤ Exponential waiting time 
between photons

3 6
9
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Power spectrum normalization

✤ With this choice, noise 
power a χ2 with 2 d.o.f.

✤ Most noises do

✤ Average power is 2. I can 
calculate statistics

✤ Noise & signal independent:

✤ Not always so... (count rate!)

✤ More complex: deadtime

P =
2

Nphot
|a|2

Leahy Norm.
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Power of Power spectrum
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Noisy noise

✤ Power spectrum of noise is 
very noisy!

✤ Increasing length or ∆t not 
useful

✤ Two ways out:

✤ a) Frequency rebinning by M

✤ b) Time slicing by W and 
averaging powers

M=10

2 with 2MW dof
2MW distribution scaled by MW

Mean: 2
Standard dev: 
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Full power spectrum

✤ RXTE light curve

✤ t = 1/16 seconds

✤ T = 3325 seconds

✤ Something can be seen by eye 
in the light curve

✤ Full power spectrum

✤ High-power signal, no 
coherent peak
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Log space and rebinning

✤ Log-log plot more appropriate 
for all frequencies

✤ Errors are 100%

✤ Frequency rebinning (M)

✤ Log-rebinning:

✤ Error bars, better shape

✤ Poisson level below scale

Friday, January 27, 12



Normalization of power spectra

✤ Leahy normalization very useful for 
statistics

✤ Power ∝ square intensity

✤ Remove it by dividing by square 
intensity: rms (Belloni) normalization 

✤ Caveat: from Leahy to rms2

✤ Meaning: squared rms per decade

✤ Root of integral gives fractional rms

Friday, January 27, 12



A note about rebinning

✤ Coherent peak: narrow power distribution - least rebinning - the 
longer the observation span, the better

✤ Broad peak: broad power distribution - rebinning helps - length of 
observation not crucial

✤ Very important for maximizing sensitivity
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W: Welch Power Spectrum

✤ If signal stationary

✤ Slice the signal

✤ Power spectrum of slices

✤ Add the W slices

✤ Sliding slices are also possible (statistics?)

✤ Windowing is also possible
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Time-frequency analysis

✤ If signal is not stationary

✤ No average of power spectra

✤ Image: time-frequency-power

✤ Uncertainty principle
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Shift ‘n’ add technique

✤ Used for twin high-frequency peaks

✤ You see one, not the other

✤ The one you see moves

✤ Correct for the movement, align the spectra 
in an additive way

✤ More complex: multiplicative technique 
(tricky to implement)
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Instrumental dead time

✤ After a photon, dead time

✤ Introduces correlations between photons (no Poisson!)

✤ It must be as small as possible and well-known and modeled

✤ Two types of dead time:

✤ Paralyzable

✤ Non-paralyzable

Every incident event causes a dead time td

 even if it’s not detected

Only a detected event causes a dead time td
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Paralyzable dead time

✤ If incident rate rin is very high, no detected counts at all!

✤ Detected rate: 

✤ In RXTE/PCA, for binning time
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Paralyzable dead time

rin = 20 kcts/s
r0 = 16.385 kcts/s
td = tb = 10 µs
N = 1024

Friday, January 27, 12



Non-paralyzable dead time

✤ If incident rate rin is very high, one count every td

✤ Detected rate: 

✤ Formula is even more complicated, result is similar

✤ Depression of noise level @ low frequencies (correlation)

✤ Peak @ td (quasi-periodicity)
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Paralyzable dead time: Sco X-1

r0 = 105 cts/s
td = 10 µs

Source noise

kHz QPOs
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Fitting power spectra

✤ Fit with typical minimization (χ2)

✤ Rebinning is important for χ2

✤ Error estimation vs. significance

✤ Limit in power an NOT rms

✤ Coherent peaks: distribution of powers and number of trials
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Number of trials

✤ Important statistical concept

✤ Should be done correctly, but if P is small can be approximated

✤ IMPORTANT: how to estimate Ntrials 

✤ For Power Spectra: number of independent frequencies
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Continuum components

✤ Very important for accreting sources

✤ Slope is limited by the window

✤ Window overflow

✤ Γ=-2 is the steepest value

✤ If an issue (pulsar noise): 
       exotic methods

Power law Γ=-2

Power law Γ=-1

Lorentzian

Sinc
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Main types of signals

✤ Coherent pulsation

✤ Broad-band noise

✤ Broad peak (QPO)

✤ “Peaked-noise”
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A word on representation
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A word on representation
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The Lorentzian (zero-centered)

✤ Power spectrum of a one-sided 
exponential

✤ Good for modeling broad-band 
noise components (flat-top)
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The Lorentzian

✤ Centroid of Lorentzian not at zero

✤ Good for modeling Quasi-Periodic 
Peaks
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The Quality factor Q

✤ To quantify the coherence of a component

Q=10, 5, 2.5, 1.25 0.625
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Q=0: the peak without quality

✤ Here ν0 = 0, equal N

✤ Notice position of the break

✤ Factor of two higher

∆
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Better representation

✤ In νPν the effect is the same

✤ Better value is ∆/2

✤ But... how do I treat things
homogeneously and how
do I treat peaked noise?
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Characteristic frequency

✤ We can use the peak in  νPν
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Lorentzian decomposition

✤ With these tools we can fit power spectra
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No physical backing (yet)

✤ Power spectrum of a damped 
oscillator

✤ Also called Cauchy distribution

✤ Even if it looks like a Lorentzian, 
it might not be a Lorentzian
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Dealing with gaps

✤ Some solutions are obvious:

✤ Welch method (skip gaps)

✤ Zero padding (or local average)

✤ Other methods are available: Lomb-Scargle

✤ Good for general uneven sampling

✤ Equivalent to linear least-square fit to sin+cos

✤ Statistically robust
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Lomb-Scargle periodogram

✤ hj sampled at tj

✤ where:                                      ensures shift independence

✤ Powerful method: it can go beyond “Nyquist”
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Beware of trends!

✤ A trend is a modification to the window

✤ Must be de-trended

✤ Same about possible 
drop outs

No trend

Trend
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Cross-spectrum

✤ Power spectrum: amplitudes of the FFT

✤ We throw away the phases

✤ If we take two time series f(t) & g(t), the 
phases make more sense

✤ Cross-spectrum:

✤ If f=g, it becomes the power spectrum

✤ What is it useful for?
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Phase/time lags

✤ The phases give us the phase delay 
between the two time series

✤ Not easy to interpret, can be linked to 
physical models

✤ Time lags: phase φ/ν

✤ Additional technical details 
(not shown)

Friday, January 27, 12



Auto/cross-correlation

✤ The power spectrum is the FT of the autocorrelation

✤ Autocorrelation is real and even, power spectrum is real and even

✤ The cross spectrum is the FT of the crosscorrelation

✤ Power- an cross-spectrum contain more information (if you can 
afford them because of statistics)

Corr(g, g) =
� ⇥

�⇥
g(t + �)g(�)d� �⇥ |G(f)|2
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Autocorrelation

✤ Uncorrelated noise: ACF is zero everywhere but at τ=0 [variance]

✤ Biased ACF: dividing by N

✤ Unbiased ACF: dividing by N-|m|

Corr(g, g) =
� ⇥

�⇥
g(t + �)g(�)d� �⇥ |G(f)|2
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Crosscorrelation

✤ Uncorrelated series: CCF is zero everywhere

✤ Simple shift: peak somewhere

Lag = 20
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When do I have a lag?

✤ “The CCF peaks at 0, therefore there is no measurable lag”

✤ NO!

✤ CCF is a superposition of
sinusoids of different periods

✤ Any asymmetry implies a lag
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Coherent signals: barycentric corr.

✤ The Earth moves and rotates, the satellite also moves

✤ This has an effect on the period (doppler modulation)..

✤ .. and on the absolute phase

✤ Times are corrected to the barycenter of the solar system

✤ Standard routines and ephemeris

✤ Not relevant for aperiodic signals
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Period folding I: χ2 test

✤ Photon arrival times tj

✤ For trial period produce phases 

✤ Put photon in appropriate phase bin

✤ Test vs. constancy (χ2)

✤ If time bins and not times, easy to generalize

✤ Problem: binning and statistics (few photons?)
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Period folding II: Z2 test

✤ Photon arrival times tj

✤ For trial period produce phases

✤ Compute

where n is the desired number of harmonics

✤ Z is distributed as a χ2 with 2n d.o.f.

✤ Good for small number of photons [Rayleigh test]
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Additional complications

✤ There can be a significant period derivative

✤ If your pulsar is in a binary system, there is Doppler effect

✤ Easy to lose a pulsation

✤ Power spectrum smeared, folding as well

✤ Must factorize possible orbit in the solution

✤ Many free parameters
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