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T1ime series
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Time series and frequency

Joseph Fourier (1768-1830)

* 'Time is important

* Different representation
* Frequency domain

* Fourier analysis

* Heat conduction =3 discontinuity
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Fourier transform

* Fourier transtorm equations h(t) = /OO H( f)ezm; ft df
* h(t) and H(f): two representations _;f
of the same equation ISR = / h(t)e_%iftdt

+ Linear transformation

* Decomposition on sine waves .
Real H(-f) = [H(f)]
Even H(-f) = H(f) [even]
+ sin(27ifot) <= O(f-fp) 0dd H(-f) = -H(f) [odd]
Real & Even H(f) is real and even
Real & Odd H(f) is imaginary and odd

+ Invariant to time shift
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Other basic properties

+ Correlation

Corr(g,h) = /OO g(t+7)h(1)dr <= G(f)H"(f)

— OO

+* Autocorrelation
Autocorrelation is the fourier

00 transform of the power spectrum

Corr(g, g) =/ g(t + 7)g(r)dr <= |G(f)|?

— OO

* Parseval’s theorem /OO |h(t)‘2dt g /OO ‘H(f)‘zdf Total power

in the signal
=00 — OO
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One-sided vs. two-sided

* Power spectral density (PSD)
P = [H(f)I - Bo < f < 69

* One-sided

Po(f)=HHIP+HEHF  0<f<oo

+ If h(t) is real

Py(f) =2/H(f)|?




Recap H(f) = /OO h(t)e 2™ tdt

* Fourier transform: decomposition on a base of sinusoids
* Sum of correlation with sinusoids
* h(t) extends from - to +oo

* PSD over frequency gives signal power

* We have real signals...

* ... but we don’t have either continuous or infinite signals
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Discrete Fourier transform

* Sampled function: xi (k=1,...,N), total length T [N numbers]

N—1
Discrete FT aj =y wpeTEN L GO, N2
k=0

* Here times are t« = kT/N, frequencies are j/T

N/2—1

ok = Z aje—Qm'jk/N
j=—N/2  Inverse FT

* Time step: AT =T/N

* Frequency step: Av=1/T
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Uncertainty principle (1)

* Frequency resolution: Av=1/T

* Time resolution: T (length of the sample of N measurements)

* The longer your measurement, the higher your frequency resolution

* This is important in time-frequency analysis (non-stationary signals)

* Formal version of UP much more complex
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No loss of information

* N numbers in input - N numbers in output (for real signals H(-f) =
[H(f)]*, but values are complex)

1N
* Highest frequency: UN/2 = 5T Nyquist frequency

* Critical sampling of a sine wave is two sample points per cycle
* If you sample less, you get the wrong period (wait..)

* Notice that H(f) is complex for real input
N—-1

+* Also: ag = E $k62ﬂ20k/N = g Tr = Neounts
k=0 k
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Power density spectrum

* If we ignore the phases of the a;’s: P = ‘a‘z (j=0,--.N /2)

* Again, analogous to hearing system
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Power density spectrum

* An example: (continuous) transform of a one-sided exponential

1 1

h(t) =e H(f)

o T
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Power density spectrum

+ Non-linear transformation

aj — bj Cj
a;|® = |b;|* + |c;|° + crossterms

* If independent (random noise added),
cross terms average out to zero
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Finite duration and sampling

+ How can one connect continuous and
discrete FT7?

o0 N—1
a(y) — / h(t)e—Qﬂ'indt Bl Z hke—Qﬂ'ijk/N
k=0

109

* Continuous time series: h(t) [-co,+oo]

* Discrete time series: he [k=0, ..., N-1]
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Finite duration and sampling

* We multiply hr = h(t)w(t)i(t)

Sl
+ w(t): window function i) = |
0 otherwise

KT

* i(t): sampling function ¢(t) = Z o(t N)

k=—o0
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Finite duration and sampling
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Convolution theorem: windows

* The transform of the product of two functions is the convolution of
the transforms

s(Oy(t) <= alv) <bv) = [ Gt

e : sin wvT
Wk =| [ wie | -

— OO

Broadening of peaks
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Convolution theorem: sampling

* The transform of the product of two functions is the convolution of
the transforms

I(v) = / h i(t)e ™ dt :% f: 0 (V ,

DRTY f=—00

* Infinite series of 0 functions, with spacing N/T =2 vny,
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Alasing

* FT is symmetric in frequency for a real signal

* Alias repeats it every 2vnyq

* Problem is signal above vnyq
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Summary of discrete F'l" effects

* WINDOW: broadening & sidebands

* SAMPLING: aliasing

* Aliasing not such a big problem for high-energy astronomy
* Binning, not sampling

* Suppression of high frequencies
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Window etlects

* Window effect is a problem:
+ It broadens delta peaks

+ It flattens the slopes of noise components (sidelobes)

* The longer the observation, the better
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Window carpentry

+ We can use different windows

Window Aw A Function

Boxcar 0.89 | -13db | 2 1
skl 1.36 | -43db | 2 0.54+0.46 cos(27tt)
el | 155 | -55db | 2 exp(-18t2)
skl 144 | -32db | 5 cos?(Ttt)
I3kelisnen | 1.68 | -58db | 5 | 0.42+0.5cos(27mt)+0.08 cos(4rtt)

7 N\

2.9 b / N
LY
T %

£ J
£ J
r

* We lose some signal .|
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Power spectra units

* A power spectrum is in units of Hz!
* It scales with the square of the intensity: variance

* If we divide by the square of the intensity, we get the fractional
variance (squared rms)

* The square root of its integral is the total fractional rms

# Useful to compare amount of variability
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Power spectrum plots

* Multiply the power spectrum by the frequency
* QObtain a vP, representation

* Useful to see where the power per decade peaks

* Characteristic frequencies o |
are peaks in vP, (later) =\
6.
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Poisson noise effects

* Counting detector
* Counting noise

* Background negligible

* Independent arrival times

¥ value
e ‘ il |

* Exponential waiting time b i R L 'l\"
between photons Mo LAl L Hibi
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Power spectrum normalization

Leahy Norm.

+ With this choice, noise 9
power a x> with 2 d.o.f. P =

+ Most noises do

* Average power 1s 2. ] can
calculate statistics

* Noise & signal independent: P01 = Psignar + Proise
* Not always so... (count rate!)

* More complex: deadtime
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Noisy noise

* Power spectrum of noise is
very noisy! op, =< Pj >=12

* Increasing length or At not
usetful

* Two ways out:

* a) Frequency rebinning by M 2 with 2MW dof
2MW distribution scaled by MW
* b) Time slicing by W and Mean: 2
averaging powers Standard dev: \/]\%W
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[Full power spectrum

“* RXTE light CUI'Ve g'mn | L guiay i ',‘
* t=1/16 seconds - | S | |
1500 l -
il |
* T = 3325 seconds ® ol Wbt R a4y M |,. 4

* Something can be seen by eye
in the light curve

* Full power spectrum

* High-power signal, no
coherent peak
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L.og space and rebinning

* Log-log plot more appropriate
for all frequencies

* Errors are 100%

* Frequency rebinning (M)

* Log-rebinning: Av,; = Av,;_1 x (1 + f)

* Error bars, better shape

+* Poisson level below scale
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Normalization of power spectra

* Leahy normalization very useful for
statistics

* Power x square intensity

* Remove it by dividing by square
intensity: rms (Belloni) normalization

* Caveat: from Leahy to rms?

* Meaning: squared rms per decade

* Root of integral gives fractional rms
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A note about rebinning

* Coherent peak: narrow power distribution - least rebinning - the
longer the observation span, the better

* Broad peak: broad power distribution - rebinning helps - length of
observation not crucial

* Very important for maximizing sensitivity
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W:Welch Power Spectrum

* If signal stationary

+ Slice the signal

* Power spectrum of slices

1500

+ Add the W slices

* Sliding slices are also possible (statistics?) ! "

* Windowing is also possible B e BB |
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Time-frequency analysis

* If signal is not stationary

* No average of power spectra

2)

Fegquency (H

* Image: time-frequency-power
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* Uncertainty principle
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Shift n” add technique

* Used for twin high-frequency peaks
* You see one, not the other
* The one you see moves

* Correct for the movement, align the spectra
in an additive way

* More complex: multiplicative technique
(tricky to implement)
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Instrumental dead time

* After a photon, dead time
* Introduces correlations between photons (no Poisson!)
* It must be as small as possible and well-known and modeled

* Two types of dead time:

Every incident event causes a dead time tq4
even if it’s not detected

* Paralyzable

i Non—paralyzable Only a detected event causes a dead time tq
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Paralyzable dead time

* If incident rate rin is very high, no detected counts at all!

+ Detected rate: 19 = ;e intd Iimt e =0
Tin —>+00

* In RXTE/PCA, for binning time ¢; > t4

) td ] N —1 td 27I'j
< P;>=2x|1—2rot (1 — 2 ty | — _—
. £ d( th)_ Nl d(tb)cos( N>
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Paralyzable dead time

= 20) el /@

ro = 16.385 kcts /s
ta =t =10 us

N =1024




Non-paralyzable dead time

* If incident rate rin is very high, one count every tq

T a =ik
* Detected rate: Tg = L lim = d

* Formula is even more complicated, result is similar
* Depression of noise level @ low frequencies (correlation)

* Peak @ tq (quasi-periodicity)
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Paralyzable dead time: Sco X-1

ro = 10° cts/s
ta =10 us




Fitiing power spectra

* Fit with typical minimization (x?)
* Rebinning is important for x?
* Error estimation vs. significance

# Limit in power an NOT rms

* Coherent peaks: distribution of powers and number of trials
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Number of trials

* Important statistical concept

* Should be done correctly, but if P is small can be approximated

~

Pchance = L'chance X Ntrials

+ IMPORTANT: how to estimate N4z

* For Power Spectra: number of independent frequencies
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Continuum components

* Very important for accreting sources

* Slope is limited by the window oy,

Lorentzian

+ Window overflow

* I'=-2 is the steepest value

* If an issue (pulsar noise):
exotic methods
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Main types of signals

* Coherent pulsation

* Broad-band noise

* Broad peak (QPO)

+ “Peaked-noise”
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+ “Peaked-noise”
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Main types of signals
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Main types of signals

1500 —

* Coherent pulsation

+ Broad-band noise
1000k

* Broad peak (QPO)

Power
— et —..
———— :

+ “Peaked-noise”

| WN |

Frequency (Hz)
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Main types of signals

* Coherent pulsation

* Broad-band noise

* Broad peak (QPO)

Power

+ “Peaked-noise”

o |
0.1 1
Frequency
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Main types of signals

* Coherent pulsation

* Broad-band noise

* Broad peak (QPO)

+ “Peaked-noise”
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A word on representation




A word on representation




The Lorentzian (zero-centered)

* Power spectrum of a one-sided
exponential

* Good for modeling broad-band
noise components (flat-top)
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The lL.orentzian

+* Centroid of Lorentzian not at zero

’L(V; N7 VO)A) o 2

\
S—— — e —

* Good for modeling Quasi-Periodic
Peaks
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The Quality factor ()

* To quantify the coherence of a component

Frequency
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(Q=0: the peak without quality

* Here vo =0, equal N

* Notice position of the break

* Factor of two higher
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Better representation

+ In vP, the effect is the same

+ Better valueis A/2

FRequency ™ Power

* But... how do I treat things :

homogeneously and how R
do I treat peaked noise?

1 -l 1 1 lllllli ; 1 ;Illill el R P o e 1 1|
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Characteristic frequency
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Lorentzian decomposition

* With these tools we can fit power spectra
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No physical backing (yet)

* Power spectrum of a damped
oscillator

* Also called Cauchy distribution

* Even if it looks like a Lorentzian,
it might not be a Lorentzian 8.4
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Dealing with gaps

* Some solutions are obvious:
* Welch method (skip gaps)
+ Zero padding (or local average)
* QOther methods are available: Lomb-Scargle
* Good for general uneven sampling
* Equivalent to linear least-square fit to sin+cos

* Statistically robust
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L.omb-Scargle periodogram

* hjsampled at t;

Py(w) =

+* where:

/

1 <' [>;(hj — h)cosw(t; — 7)) L1250k, — h)sinw(t; —7))*
202 \ > jcos?w(t; —7) N sin® w(t; — 7)
23 Zj sin 2wt ; RS
tan(2wr) = S R shift independence

* Powerful method: it can go beyond “Nyquist”
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Beware of trends!

+ A trend is a modification to the window

* Must be de-trended

10°

* Same about possible ‘
drop outs o Trend

10°

Power
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(ross-spectrum

* Power spectrum: amplitudes of the FFT
* We throw away the phases

* If we take two time series f(t) & g(t), the
phases make more sense

* Cross-spectrum: Cf,g(y) — F}‘(V) X Fg(V)
* If f=¢, it becomes the power spectrum

+ What is it useful for?
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Phase/time lags

* The phases give us the phase delay
between the two time series

* Not easy to interpret, can be linked to

physical models N ——— :
R K. ]
* Time lags: phase ¢ /v AR 2T ¥ — o_]
— , 5P . 4
§ 0.010 F | _t_ __________ % _(_:_Q_Di?gze‘,,} ___________ { FF _
+ Additional technical details = ¢ J————. e ]
3 (')«'h*-( : « A
(not shown) - %gﬁ»{ —
0.001 ¥ 63 ‘ .
T 4{0\,:
§ [T
v 4
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Auto/cross-correlation

* The power spectrum is the FT of the autocorrelation

O

007‘7“(9,9)=/ g(t + 7)g(7)dr <= |G(f)|?

— OO
* Autocorrelation is real and even, power spectrum is real and even

* The cross spectrum is the FT of the crosscorrelation

* Power- an cross-spectrum contain more information (if you can
afford them because of statistics)
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©. @)

Autocorrelation corr(g.g) = / gt + 7)g(r)dr

— OO

* Uncorrelated noise: ACF is zero everywhere but at 7=0 [variance]
* Biased ACF: dividing by N

* Unbiased ACF: dividing by N-|m |
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(rosscorrelation

* Uncorrelated series: CCF is zero everywhere

* Simple shift: peak somewhere
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When do | have a lag?

* “The CCF peaks at 0, therefore there is no measurable lag”

* NO!

# CCF is a superposition of
sinusoids of different periods

* Any asymmetry implies a lag

Auocorrelaton

360

340 L

320+

300

280 ¢
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Coherent signals: barycentric corr.

+ The Earth moves and rotates, the satellite also moves
* This has an effect on the period (doppler modulation)..

* .. and on the absolute phase

* Times are corrected to the barycenter of the solar system
+ Standard routines and ephemeris

* Not relevant for aperiodic signals
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Period folding I: % test

* Photon arrival times ¢;

* For trial period produce phases ¢; = Frac (%)
* Put photon in appropriate phase bin

* Test vs. constancy (x?)

* If time bins and not times, easy to generalize

* Problem: binning and statistics (few photons?)
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Period folding II: 7~ test

* Photon arrival times ¢;

* For trial period produce phases ¢; = Frac (—7>

* Compute

k=1

£
/

N : N 2
(Z COS kqu) E (Z sin kqu)
j=1 j=1

where 7 is the desired number of harmonics

+ 7 is distributed as a x2 with 2n d.o.f.

* Good for small number of photons [Rayleigh test]
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Additional complications

* There can be a significant period derivative

* If your pulsar is in a binary system, there is Doppler effect

* Easy to lose a pulsation —

* Power spectrum smeared, folding as well

* Must factorize possible orbit in the solution

* Many free parameters
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