

Schiaparelli and his legacy

Symposium: Milano, Oct 19-20, Torino Oct 21 On the centenary of his death

Under the High Patronage of the President of the Italian Republic

Complex textures of laminated sediments on Mars should be of biogenic origin

Vincenzo Rizzo Geologist, Scientific Collaborator of Florence University, Researcher in pension of National Research Council

References

Rizzo, V. & Cantasano, N. (2009). Possible organosedimantary structures on Mars. International Journal of Astrobiology 8 (4), 267-280.

Rizzo , V. & Cantasano, N. (2009). Le "Blueberries" ed i sedimenti laminati del pianeta Marte sono strutture biogeniche? Geoitalia N.29, 41-46.

Rizzo , V. & Cantasano, N. (2009). Esiste vita su Marte? http://www.scienzeinrete.it, dicembre 2009.

A scientific discussion

Blueberries

Are they organosedimentary structures ?

An approach to overcome limits

On Earth

Exhaustive investigations:

- 1. Isotopic
- 2. Mineralogical
- 3. Microtextural
- 4. Textural
- 5. Sedimentological
- 6. Biochemical
- 7.

<u>Limits on Mars</u>

limited and "scanty":

- 1. Isotopic/mineralogical
- 2. textural
- 3. structural
- 4. Sedimentological

But....

....Thousands of High Quality Imagery on Mars (both microscopic and panoramic)

In depth study of:

- Structures
- •Textures
- Interrelations
- Comparisons

Structures and textures of sediments are fundamental in geology to understand their origin

An approach to overcome limits

From an approach to a Metodology

http://marsrovers.jpl.nasa.gov/gallery

Archives of earth images

Systematic analysis at different scales and by strong amplification: from panoramic to microscopic* imagery

* Field of view = 3,2cm Enlargement= up to 300% Resolution= 40 micron

Investigating archives for analysis and comparisons

Looking over compatibility between structures and fundamentals of inorganic sedimentation (IS)

An easy answer looking through basilar principles

Inorganic Sedimentation (IS)

generates a layers sequence by granulometric or compositional variation.

).

Organic Sedimentation (OS)

generates complex distinctive textural features

Growing at esternal surface (Lyell principle)

recent

Internal growing

Intertwined filaments

disarmonic aminae convolution

An easy answer looking through basilar principles

Internal growing

Intertwined filaments

disarmonic laminae convolution

Are in contrast with the fundamentals of inorganic sedimentation (IS)

Could the same reasoning not be applied to Mars?

An easy answer looking through basilar principles

The following slides show the structural features of mars sediments we pointed out:

- -FILMS (F)
- LAYERS (L)
- BLUEBERRIES (B)
- OTHER FINDINGS (OF)

-Denoting inconsistency to inorganic sedimentation

F/OF - Films and plastic/gelatinous/flowing substances A structured translucid film

Plastic/gelatinous substances

L – From films to thin lamination

"Planar SB-Polycentric"

type structure

Submillimetric Laminated sediments

SB

mm

LA-skeletal type lamina

LB- type lamina

10

L - "SB" could also be assembled in different ¹¹ "linear rows" Almost

sheaf

"SB Linear rows' structures

SB

Irregular closed Linear rows

L – Laminae and rows show irregular settings¹²

L - Filaments of coalescing microspherules "Ri"

"filaments of coalescing microspherules" type structure having different Transparencies and arrays:

- 2) Serpentiform
- 3) Gradually enlarging
- 4) Spiralled
- 5) Globular or casual

40-60microns -up to 1 mm

L - Filaments of coalescing microspherules "Ri"

60microns -up to 1 mm

L - Intertwined filaments

"Intertwined filaments" type structure 60microns - several mm Coalescing microspherules forming intertwined filaments

L - Twisted and Intertwined filaments

L - Intertwined filaments

Two clear examples

L - Intertwined filaments

B – Spatial polycentric structures of microspherules

A "Spatial-polycentric SSB" type structure denoting two different processes:

1. By SSB internal growth

2. By SB or SSB rolling tendency

Up to 5-8mm

B – Spatial polycentric structures of microspherules

Irregular SSB setting

1. SSB Internal growing 2. Enrolling tendency

Polyispherules

Up to 5-8mm

B - Spatial polycentric structures of 1 By SSB Internal growth structure denoting two

kind of devepoment processes

at the end of linear array

B - Spatial polycentric structures of microspherules By SB or SSB rolling tendency

2

B – Complex structure and complex morphology

Irregular rolled SBsheet and/or irregular policentric SSB set

SF

23

sheet

Terrestrial stromatolites

A sequence of a repetitive pair of layers (due to the activity of cianobacteria)

Made by a scheletric lamina (like LA, due to biomineralisation of intertwined spherules filaments)

and by an agglutinated lamina (like LB, made by trapped grain)

Film exists

Micro spherules spherules filaments Intertwined filaments

and at different scales

On Earth

Sheated colony of cianobacteria

With parallels at macroscopic scales.....

On Mars

Stromatolites: Earth vs Mars ...With parallels at microscopic scale

OF: strange findings resembling fossils or others biological structures

OF: strange findings resembling fossils or other's biological structures

OF: strange findings resembling fossils

(on a meteorite from Mars)

Conclusions

Mars <u>mic</u>rospherules

Colony of cianobacteria

Microspherules (we believe to be cianobacteria colonies)

Planar (laminae) or Linear arrays (filaments)

Forming sub-mm laminated sediments and Blueberries Forming massive Intertwined structures

Very similar to terrestrial

Life esists everywhere in the Universe:

Its music plays always by the same first notes

PANSPERMIA

(Hoyle, F & Wickramasinghe, N.C., 1991)