

Sorgenti astrofisiche di alta energia

Stefano Vercellone – INAF/OAB

A V-day Una giornata di discussione sui neutrini cosmici

Introduction

The Galactic companions

The extra-galactic realm

Perspectives

Caveats

This topic is <u>extremely vast</u> \rightarrow just a few examples

Mostly from an **<u>observational point of view</u>**, discussing models would require a book !

The link between HE/VHE/UHE sources and neutrino emission is covered by other speakers

Introduction – main catalogues

Stefano Vercellone - Neutrino Day

INAF

Major observing facilities

- High-energy (~30 MeV ~100 GeV) pair-conversion tracker detectors
 - AGILE, Fermi/LAT
 - Wide FoV (~1/5 of the sky), scanning mode, public data (1yr [A], full [F]), thousands of sources.
- Very high-energy (~100 GeV ~50 TeV) Imaging Atmospheric Cherenkov Telescopes (IACTs)
 - MAGIC (N), H.E.S.S. (S), VERITAS (N)
 - Narrow FoV (~2-3 deg), pointed mode, improved energy and angular resolution, modest duty-cycle. Almost proprietary data, hundreds of sources.
- Ultra high-energy (~0.5 ~100 TeV) Water Cherenkov detectors
 - HAWC (N)
 - Wide FoV (~2/3 of the sky/day), synoptic survey instrument, less extreme energy and angular resolution, high duty-cycle (95%). Proprietary data, tens of sources.

Stefano Vercellone - Neutrino Day

30 MeV – 100 GeV sky

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

30 MeV – 100 GeV sky

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

National Aeronautics and Space Administration FERMI'S GAMMA-RAY COSMOS OGRB 130427A Fermi Six-year Sky Map This alleky view, centered on our Milky Way Galaxy, is the deepest and best-resolved portrait of the gamma-ray sky common cay. Specific products and the second second and the second second second second second August 2014 at energies greater than 1 billion electronvist (Second For comparison, the energy of visible light fails between 2 and 3 electron volts. Lighter shades indicate stronger emission. What Has Fermi Found? Fermi's Large Area Telescope (LAT) has cataloged more than 3,000 discrete 0 OIC 445 Cygnus > ONGC 6624 ab Nebula 🚺 B0218+357 O______ ICAA2 the Jellyfish Neb Pulsar of Pulsar of 311-3430 heats the facing side of its porating it, as shown in this artist's it the nulsar's radio heam 3C 454.3 30 454.3 Fermi data revealed vast gamma-ray bubbles extending tens of thousands of light-years from the Milky Way's plane. The Fermi Bubbles may be related to past activity of the supermassive black hole at our

100 GeV – 50 TeV sky

INAF

Deidre & Horan+16

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

0.1 – 100 TeV sky

Sandoval & HAWC Coll. 2016

2nd HAWC Catalogue in preparation. ~40 sources Several sources are also in TeVCat, but about ¼ have no low-energy counterparts

Stefano Vercellone - Neutrino Day

0.1 – 100 TeV sky

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

HAWC view of the Inner Galactic plane

Stefano Vercellone - Neutrino Day

Introduction – bridging the gap

Stefano Vercellone - Neutrino Day

INAF

Only ~25% of the 2FHL sources have been previously detected by Cherenkov telescopes. **2FHL provides a reservoir of candidates to be followed up at very high energies.**

The Fermi sky above 50 GeV

2FHL Ackermann+16

360 sources 282 non-IACT 216 |b|>10° 66 |b|<10°

94 IACT sources detected in 2FHL

~25% of Galactic sources (20-30) has a photon index harder than $2 \rightarrow$ high-energy SED peak in the TeV band.

INAF

ISTITUTO NAZIONALE DI ASTROFISIC

Fermi-LAT detects emission from many Galactic sources well beyond 500 GeV.

Preliminary *Fermi*/LAT results E>10 GeV

Beyond 2FHL → 3FHL

INAF

3FHL Dominguez+16

10 GeV – 2 TeV

84 months of data (until August 2015)
1720 (54 extended); 129 detected by IACTs (TeVCat)
358 brand new sources (not in 1FHL/2FHL/3FGL/TeVCat)
Median localization accuracy is 2.3' in radius (95%)

Beyond 2FHL → 3FHL

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE DE ASTROPHYSICS

3FHL (E>10 GeV) vs 2FHL (E>50 GeV) – Galactic plane

The Galactic companions

INAF

HAWC data

Cygnus region

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSIC

Cygnus region

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

SNRs population at a glance

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

Different SNRs may be preferred targets of ground- or space-based facilities

Stefano Vercellone - Neutrino Day

IC 443 – a multi-wavelength view

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

Stefano Vercellone - Neutrino Day

The "Fab-four" pion-bumbers

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

Pion-decay signature in the AGILE & Fermi-LAT data

Stefano Vercellone - Neutrino Day

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

Ideal laboratory for particles propagation studies (see Abdalla+16)

RX J1713.7-3946 over time

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

Chaves 2016

2004

18 h livetime E_{min} = 1 TeV γ-ray excess: 1430 PSF (R_{68%}) = 4.8'

2006

63 h livetime

 $E_{min} = 0.3 \text{ TeV}$

2016

164 h livetime $E_{min} = 0.25 \text{ TeV}$ γ -ray excess: 31000 PSF ($R_{68\%}$) = 2.9' Better err_{sys} control

Stefano Vercellone - Neutrino Day

γ-ray excess: 6700

 $PSF(R_{68\%}) = 3.6'$

INAF

Abdalla+16

Neither of the two scenarios (leptonic or hadronic), or a mix of both, can currently be concluded to explain the data unambiguously.

Stefano Vercellone - Neutrino Day

PWN – the "violently quiet" Crab

INAF

PWN – the "violently quiet" Crab

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

The extra-galactic realm

The extra-galactic realm

Active Galactic Nuclei

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

HE/VHE AGNs

Flat-spectrum radio quasars BL Lacs object Radio Galaxies Radio-loud narrow-line Seyfert-1 galaxies

Blazars: to sequence or not to sequence?

INAF

Phenomenological blazar sequence based on the observed bolometric luminosity.

Some controversy (see Giommi +12) on selection bias.

Analytical (power-law segments) phenomenological SED for five luminosity bins.

The Sequence holds: the SED becomes redder, and the Compton dominance increases as the total luminosity increases.

Several photons above 20 GeV (one at 45 GeV on MJD 56827), constraining the γ -ray emission region to be located close to the outer boundary of the BLR, leading to fast flux variability.

STITUTO NAZIONALE DI ASI

FSRQs – PKS 1441+25

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

The location of the emitting region:

- in the jet outside the BLR during the period of high activity
- partially within the BLR during the period of low (typical) activity

Stefano Vercellone - Neutrino Day

BL Lacs – PG 1553+113: periodicities

Discovery of a possible ~2 year periodic modulation in PG 1553+113. Possible explanations

- Pulsational accretion flow instabilities, approximating periodic behavior;
- geometrical models (jet precession/rotation, an helical structure);
- a mechanism analogous to low-frequency QPO from Galactic high-mass binaries/microquasars;
- the presence of a gravitationally bound binary SMBH system.

STITUTO NAZIONALE DLA

BL Lacs – Mrk 421

A look at the quiescent spectral energy distribution (SED) for this source

Hadronic

- Size of the emitting region of a few R_g
- Magnetic field B~50 G
- Protons with energies up to 2x10¹⁸ eV

Leptonic

- Size of the emitting region of ${\sim}10^4~R_{\rm g}$

INAF

STITUTO NAZIONALE DI ASTF

- Magnetic field B~0.05 G
- Electrons with energies up to 5x10¹³ eV

Blazar variability at short-timescales

INAF

PKS 2155-304

- H.E.S.S. observation with 1 min time-bin
- Outbursts on 200s time-scale are resolved
- Doppler factor ~100 are required to explain this rapid variability

3C 279

• *Fermi*-LAT observation with variability down to 2 min binned time-scale

• Challenges for current emission models

Blazar monitoring

Several facilities are currently performing blazar monitoring at HE/VHE

ISTITUTO NAZIONALE DI ASTROFISICI NATIONAL INSTITUTE FOR ASTROPHYS

INAF

Radio Galaxies – Centaurus A

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

The lobe flux constitutes a considerable portion (greater than one-half) of the total source emission.

The γ-ray emission from the lobes is interpreted as inverse Compton– scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light.

Stefano Vercellone - Neutrino Day

Radio Galaxies – Fornax A

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

Radio-loud narrow-line Seyfert-1 galaxies

Foschini+08,09 identified a small sample of radio-loud NLS1 galaxies with FSRQlike properties (flat-spectrum radio nuclei, variability).

The SED of PMN J0948+0022 compared with the blazar sequence (continuous lines of different colors) and a few of the most powerful radiogalaxies (Cen A, M 87, NGC 6251).

PMN J0948+0022 is in the blazars region, with the observed emitted power well above the traditional radio galaxies region.

About ten of confirmed objects \rightarrow a new class of γ -ray AGNs

INAF

STITUTO NAZIONALE DI AST

Perspectives

Stefano Vercellone - Neutrino Day

HBL and extreme HBLs

INAF

ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

HBL and extreme HBLs

INAF

Two sites (North and South) for a whole-sky coverage

Operated as on open Observatory

A factor of 10 more sensitive w.r.t. the current IACTs

CTA The Cherenkov Telescope Array

A few large telescopes to cover the range 20 - 200 GeV

~km² array of mediumsized telescopes for the 100 GeV to 10 TeV domain

~4km² array of smallsize telescopes, sensitive above a few TeV up to 300 TeV

4 LSTs [N & S]

15 MSTs [N] 25 MSTs [S] (+ 24 SCTs)

70 SSTs [S]

Adapted from W. Hofmann

INAF

A factor of **5-10 improvement** in sensitivity in the domain of **about 100 GeV to some 10 TeV.**

Extension of the accessible energy range from well below 100 GeV to above 100 TeV.

Credits: The CTA Consortium

INAF

Further optimization of event selection can improve the angular resolution

You can download the Instrument response functions at the following URL: https://portal.cta-observatory.org/Pages/CTA-Performance.aspx

1. Dark Matter Programme

- 2. Galactic Centre Survey
- 3. Galactic Plane Survey
- 4. Large Magellanic Cloud Survey
- 5. Extragalactic Survey
- 6. Transients
- 7. Cosmic-ray PeVatrons
- 8. Star-forming Systems
- 9. Active Galactic Nuclei
- **10.Cluster of Galaxies**
- 11. Non-Gamma-ray Science

ISTITUTO NAZIONALE DI ASTROFISICI

INAF

CTA as an all-sky Observatory

INAF

The aim is to perform a blind survey of 25% of the sky, and to construct an unbiased VHE extragalactic source catalogue with an integral sensitivity limit of ~5 mCrab.

Credits: The CTA Consortium

CTA will combine the **deep MSTs sensitivity** for E > 100 GeV and the **wide SSTs field of view** (>9°).

We expect the **discovery of extreme BL Lac objects peaking in the 0.1 – 1 TeV region**, thanks to the good spectral coverage provided by MSTs and SSTs in the 0.1 – 10 TeV energy range.

CTA extra-galactic survey

INAF

ISTITUTO NAZIONALE DI ASTROFISIC NATIONAL INSTITUTE FOR ASTROPHY

The survey would connect with the Galactic Plane Survey (|b| < 5°) over Galactic longitude -90° < l < 90°.

Several highly interesting regions such as the Virgo & Coma clusters, the Fermi Bubbles (North) and Cen A (South) will be covered by the proposed survey. The EGAL survey will be useful to investigate dark matter sub-halos.

Current simulations suggest that a wide-field, shallow survey should detect more sources than a narrow-field, deep survey (given an equal survey time).

Padovani & Giommi (2015) derived the expected number of blazars on the sky in the GeV–TeV domain.

With the 5 mCrab sensitivity during the proposed survey, **CTA should detect around 100 sources in 10,000 deg**².

Padovani & Giommi 2015

High- and very high-energy astrophysics is a rapidly evolving field.

Number of detected HE/VHE sources is steadily increasing.

Multi-messengers astrophysics (neutrino/ gravitational waves) is the current frontier.