High Energy

Neutrino Astronomy

Paolo Lipari (INFN Roma Sapienza) "neutrino-day" Osservatorio di Brera Milano, 3rd november 2016

- 1. General Introduction
- 2. Fundamental Mechanism

for high energy neutrino production

- 3. Neutrinos versus Gamma Rays
- 4. Atmospheric Neutrinos
- 5. The Gamma Ray sky
- 6. Astrophysical Neutrinos

7. Outlook

1. General Introduction

- Neutrino sources
- Neutrinos from the "High Energy Universe"
- Neutrino Flavor Oscillations

Astrophysics with four MESSENGERS

O Photons

Neutrinos

Essentially all the information we have on the Universe around us has been obtained with photons.

The history of Astrophysics is the EXTENSION of the range of wavelength available for observations

• Cosmic Rays (p,e⁻, \overline{p} ,e⁺, ...)

• Gravitational waves

Astrophysics with Four MESSENGERS

• Cosmic Rays (p,e⁻, \overline{p} ,e⁺, ...)

• Gravitational waves

• Cosmic Rays (p,e⁻, \overline{p} ,e⁺, ...)

• Gravitational waves

SPACE is FULL of NEUTRINOS

that come from a variety of sources

in a very broad interval of energies

Natural Neutrino Fluxes

30 decades

Neutrino Astrophysics is a very diverse field that extends in a very broad energy range

$$\begin{split} E_{\nu} \simeq 10^{-4} \text{ eV} & \text{Cosmological neutrinos} \\ \hline [\dots] & \text{"km3 concept" (and extensions)} \\ E_{\nu} \simeq 10^{12} \text{--}10^{14} \text{ eV} & \text{Galactic point sources} \\ E_{\nu} \simeq 10^{14} \text{--}10^{16} \text{ eV} & \text{IceCube signal} \\ \hline E_{\nu} \simeq 10^{18} \text{--}10^{20} \text{ eV} & \text{"GZK neutrinos"} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23} \text{ eV} & \text{[Speculative neutrinos from supermassive particles} \\ \hline E_{\nu} \simeq 10^{23}$$

Neutrino Astronomy (or Astrophysics) has just been born at the end of the last Century

TWO (+1) ASTROPHYSICAL OBJECTS have been "seen" in Neutrinos"

The SUN

SuperNova SN1987A

The Earth: Geophysical Neutrinos

SOLAR NEUTRINOS

Source of Energy of the SUN : Nuclear Fusion

 $4p + 2e^- \rightarrow {}^4\text{He} + 2\nu_e$

Energy Released per each Cycle $Q = 4m_p + 2m_e - m_{He} = 26.73 \text{ MeV}$ $\Phi_{\nu_e} \simeq \frac{1}{4\pi d_{\odot}^2} \frac{2L_{\odot}}{(Q - \langle E_{\nu} \rangle)}$ $\phi_{\nu_{\odot}} \sim 6 \times 10^{10} \text{ (cm}^2 \text{ s})^{-1}$

1012

SK SNO

5.00 10.00

NEUTRINOS from SUPERNOVAE EXPLOSIONS (Gravitational Collapse)

GEOPHYSICAL NEUTRINOS

²³⁸U
$$\xrightarrow{100\%}$$
 ²⁰⁶Pb + 8⁴He + 6 e^{-} + 6 $\bar{\nu}_{e}$ + 51.7 [MeV]

²³²Th
$$\xrightarrow{208}$$
Pb + 6⁴He + 4 e^- + 4 $\bar{\nu}_e$ + 42.7 [MeV]

$${}^{40}\text{K} \xrightarrow[89.28\%]{} {}^{40}\text{Ca} + e^- + \bar{\nu_e} + 1.311 \text{ [MeV]}$$

$${}^{40}\text{K} + e^- \xrightarrow[10.72\%]{} {}^{40}\text{Ar} + \nu_e + 1.505 \text{ [MeV]}$$

The Cross Section of the Neutrino is VERY SMALL

PROBLEM : Detection is Very Difficult Require Very Large Detectors

OPPORTUNITY:

Neutrinos come from DEEP INSIDE Astrophysical Objects

SN 1006

Crab Nebula

COSMIC RAYS

Victor Hess

before the balloon flight of 1912

Discovery of Cosmic Rays Beginning of High Energy Astrophysics

Cosmic Rays, Photons, Neutrinos Gravitational Waves

4 Messengers for the study of the *"High Energy Universe"* Three messengers are "inextricably" tied together [Cosmic Rays, Gamma Rays, High Energy Neutrinos can really be considered as three probes that study the same underlying physical phenomena]

Neutrino Flavor Oscillations:

 $\{\nu_e, \nu_\mu, \nu_\tau\}$ Flavor eigenstates

$$\{\nu_1, \ \nu_2, \ \nu_3\}\\\{m_1, m_2, m_3\}$$

Mass eigenstates

(with well defined masses)

$$|
u_{\alpha}\rangle = \sum_{j} U_{\alpha j} |\nu_{j}\rangle$$

Mixing Matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3 mixing angles $(heta_{12}, heta_{13}, heta_{23})$ CP violating phase δ

$$c_{jk} = \cos \theta_{jk}$$
$$s_{jk} = \sin \theta_{jk}$$

Neutrino Mass Hierarchy:

$$P_{\nu_{\alpha} \to \nu_{\beta}}(E_{\nu}, L) = \left| \sum_{j} U_{\beta j} U_{\alpha j}^{*} e^{-im_{j}^{2} \frac{L}{2E_{\nu}}} \right|^{2}$$
$$= \sum_{j=1,3} |U_{\beta j}|^{2} |U_{\alpha j}|^{2}$$
$$+ \sum_{j < k} 2 \operatorname{Re}[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}] \cos\left(\frac{\Delta m_{jk}^{2} L}{2E}\right)$$
$$+ \sum_{j < k} 2 \operatorname{Im}[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}] \sin\left(\frac{\Delta m_{jk}^{2} L}{2E}\right)$$

Flavor transition probability

Neutrino created with flavor α is observed at a distance L with flavor β

$$P_{\nu_{\alpha} \to \nu_{\beta}}(E_{\nu}, L) = \left| \sum_{j} U_{\beta j} U_{\alpha j}^{*} e^{-i m_{j}^{2} \frac{L}{2E_{\nu}}} \right|^{2}$$
$$= \sum_{j=1,3} |U_{\beta j}|^{2} |U_{\alpha j}|^{2}$$
$$+ \sum_{j < k} 2 \operatorname{Re}[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}] \cos\left(\frac{\Delta m_{jk}^{2} L}{2E}\right)$$
$$+ \sum_{j < k} 2 \operatorname{Im}[U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}] \sin\left(\frac{\Delta m_{jk}^{2} L}{2E}\right)$$

Flavor transition probability

Neutrinos created in a volume of linear size

 $X_{\text{source}} \gg E/|\Delta m_{jk}^2|$

Oscillating terms average to zero

$$\langle P(\nu_{\alpha} \to \nu_{\beta}) \rangle = \sum_{j} |U_{\alpha j}|^2 |U_{\beta j}|^2$$

$$\simeq \begin{pmatrix} 1-2v & v & v \\ v & (1-v)/2 & (1-v)/2 \\ v & (1-v)/2 & (1-v)/2 \end{pmatrix} \simeq \begin{pmatrix} 0.6 & 0.2 & 0.2 \\ 0.2 & 0.4 & 0.4 \\ 0.2 & 0.4 & 0.4 \end{pmatrix}$$

$$\theta_{13} \simeq 0$$

$$\theta_{23} \simeq 45^{\circ}$$

$$v = \cos^2 \theta_{12} \sin^2 \theta_{12} \simeq 0.2$$

$$\begin{pmatrix} 0.6 & 0.2 & 0.2 \\ 0.2 & 0.4 & 0.4 \\ 0.2 & 0.4 & 0.4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Relative fluxes at the observers starting from 2 nu_mu and 1 nu_e (standard mixture for a pion chain-decay origin)

 θ_{12} θ_{13} θ_{23} = best fit

More in general: For an arbitrary flavor composition emission

Significant presence of tau-neutrinos

Possibility of "Modifications" of the neutrino flux during propagation.

Investigate : Flavor Oscillations (with very long path-lengths) Decay (with very long lifetimes)

Important difficulty: Properties of the neutrinos at the source must be sufficiently well understood. What could one learn about the neutrino properties when astrophysical neutrinos are finally detected ?

Extraordinary Long Baselines

$$L_{\text{galactic}} \simeq 3 \times 10^{22} \text{ cm}$$

 $L_{\text{extra}} \simeq 1.3 \times 10^{28} z \text{ cm}$

Oscillations with very small

$$\Delta m^2 \sim 10^{-18} \text{ eV}^2$$

Example: [Pseudo-Dirac neutrinos mass doublets with tiny mass splitting]

Neutrino Decay (9 orders of magnitude improvement) Neutrino cross sections at very high energy

 Δm^2

2. Fundamental Mechanism for high energy neutrino production

- Hadronic interactions
- Weak decays
- "pp" versus " $p\gamma$ "

Fundamental Mechanism: Acceleration of Charged Particles to Very High Energy ("non thermal processes") in astrophysical objects (or better "events").

Creation of Gamma Rays and Neutrinos via the interactions of these relativistic charged particles.

High Energy Astrophysical Source:

Astrophysical object (or "event") that produces (and for some time contains) relativistic particles

Neutrino Emission by proton-proton interactions

via production and decay of charged pions

$$p + p \rightarrow \pi^+ + \pi^- + \dots$$

$$\begin{aligned} \pi^+ \to \mu^+ \quad \nu_\mu \\ & \downarrow \quad e^+ \quad \nu_e \quad \overline{\nu}_\mu \end{aligned}$$

Smaller contributions from the decay of Kaons K^{\pm} K_L +Charmed particles

Photon Emission by Proton interaction

via production and decay of neutral pions

 $p + p \rightarrow \pi^{\circ} + \dots$

 $\pi^{\circ} \rightarrow \gamma \gamma$

Smaller contributions from decay of other particles

 $\eta \to \gamma + \dots$

$$\eta' \to \gamma + \dots$$

Hadronic mechanism: (emission of photons by proton interaction).

$$N_p(E) \simeq K E^{-\alpha}$$

Relativistic protons Population in the source.

expect (in most cases) a power law spectrum

A proton in the source has a probability of interacting in a time dt :

$$dP_{\rm int}(E_p) = \sigma_{pp}(E_p) n_p \beta c \, dt$$

proton-proton inelastic cross section

Gas density in the target

$$\phi_{\nu}(E_{\nu}) = \frac{1}{4 \pi d^2} \dot{N}_{\nu}(E_{\nu})$$

Flux observed at the Earth

$$\dot{N}_{\nu}(E_{\nu}) = \int_{E_{\gamma}}^{\infty} dE_p N_e(E_p) \frac{dP_{\rm int}(E_p)}{dt} \left| \frac{dN_{p\to\nu}(E_{\nu}, E_p)}{dE_{\nu}} \right|$$

Number of neutrinos of energy E_{ν} produced in an interaction of a proton of energy E_p

$$\dot{N}_{\nu}(E_{\nu}) = \int_{E_{\gamma}}^{\infty} dE_p N_e(E_p) \frac{dP_{\text{int}}(E_p)}{dt} \frac{dN_{p \to \nu}(E_{\nu}, E_p)}{dE_{\nu}}$$

$$\dot{N}_{\gamma}(E_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE_p \ N_e(E_p) \ \frac{dP_{\rm int}(E_p)}{dt} \ \frac{dN_{p\to\gamma}(E_{\gamma}, E_p)}{dE_{\gamma}}$$

Convolution of the probability of creating a neutral pion of a certain energy + probability that the pion decay into a photon of energy E_{γ}

Rest Frame
$$E_{\gamma} = \frac{m_{\pi}}{2}$$

Photons are emitted isotropically and monochromatically with a fixed energy.

Frame where the pion is moving

 $\frac{dN_{\gamma}}{dE_{\gamma}}(E_{\gamma};E_{\pi})$

The spectrum of the photons has a "scaling form"

$$F_{\pi^0 \to \gamma} = \begin{cases} 1 & \text{for } x < 1\\ 0 & \text{for } x > 1 \end{cases}$$

$$\frac{dN_{\gamma}}{d\ln E_{\gamma}} = E_{\gamma} \frac{dN_{\gamma}}{dE_{\gamma}}$$

Functions of same shape

Neutrino spectra in pion decay

$$\left\langle x_{\pi^+ \to \nu_{\mu}} \right\rangle = \frac{1 - r_{\pi}}{2} \simeq 0.213$$
$$\left\langle x_{\pi^+ \mu^+ \to \overline{\nu}_{\mu}} \right\rangle = \frac{3 + 4 r_{\pi}}{20} \simeq 0.264$$

$$\langle x_{\pi^+\mu^+\to\nu_e} \rangle = \frac{2+r_{\pi}}{10} \simeq 0.257$$

 $\frac{dN_{p\to\gamma}}{dE_{\gamma}}(E_{\gamma};E_p) = \frac{dN_{p\to\pi}}{dE_{\pi}}(E_{\pi},E_p) \otimes \frac{dN_{\pi^0\to\gamma}}{dE_{\gamma}}(E_{\gamma};E_{\pi})$

Inclusive distribution of pions Produced in proton interactions Fermilab Experiment A.Brenner et al. Phys.Rev D26, 1497, (1982).

Two different Energies (100, 175 GeV)

Feynman Scaling

$$\frac{dn_{p\to\pi}}{dE_{\pi}}(E_{\pi};E_0) = \frac{1}{E_0} F_{p\to\pi}\left(\frac{E_{\pi}}{E_0}\right)$$

(only approximate validity)

but very useful as "guide"
(and with important consequences)

 $\frac{dN_{p\to\gamma}}{dE_{\gamma}}(E_{\gamma};E_p) = \frac{dN_{p\to\pi}}{dE_{\pi}}(E_{\pi},E_p) \otimes \frac{dN_{\pi^0\to\gamma}}{dE_{\gamma}}(E_{\gamma};E_{\pi})$

Inclusive distribution of pions Produced in proton interactions

The convolution of two scaling functions is again a scaling function

Important consequence :

A Power-Law spectrum of primary protons generates power law spectrum of same exponent.

"Geometric demonstration"

$$E_p^{-2} \left. \frac{dN_{\gamma}}{d\ln E_{\gamma}} \right|_{pp \to \gamma} (E_{\gamma}, E_p)$$

Weight all contributions with a power Law

Sum all contributions: obtain power Law of same exponent

$$\dot{N}_{\gamma}(E_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE_p \left[N_e(E_p) \right] \frac{dP_{\rm int}(E_p)}{dt} \frac{dN_{p \to \gamma}(E_{\gamma}, E_p)}{dE_{\gamma}}$$

Number of photons emitted per unit time and unit energy at energy Eg

=

*

Number of protons in the source with Energy Ep Probability that one proton interact per unit time

*

Number of photons of energy Eg produced in the interaction of a proton of Energy Ep

$$\dot{N}_{\gamma}(E_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE_{p} N_{e}(E_{p}) \frac{dP_{\text{int}}(E_{p})}{dt} \frac{dN_{p \to \gamma}(E_{\gamma}, E_{p})}{dE_{\gamma}}$$
$$N_{p}(E) \simeq K E^{-\alpha} \frac{dN_{p \to \gamma}(E_{\gamma}, E_{p})}{dE_{\gamma}} \simeq \frac{1}{E_{\gamma}} F_{p \to \gamma} \left(\frac{E_{\gamma}}{E_{p}}\right)$$
$$\frac{dP_{\text{int}}(E_{p})}{dt} = \sigma_{pp}(E_{p}) n_{p} \beta c$$

$$\dot{N}_{\gamma}(E_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE_p \left[K \ E_p^{-\alpha} \right] \left[n_p \ \sigma_{pp}(E) \ \beta c \right] \left[\frac{1}{E_p} \ F_{p \to \gamma} \left(\frac{E_{\gamma}}{E_p} \right) \right]$$

$$\dot{N}_{\gamma}(E_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE_p \left[K E_p^{-\alpha} \right] \left[n_p \sigma_{pp}(E) \beta c \right] \left[\frac{1}{E_p} F_{p \to \gamma} \left(\frac{E_{\gamma}}{E_p} \right) \right]$$

Approximations:

$$v = c$$

$$\sigma_{pp}(E) \simeq \sigma_{pp}$$

$$\dot{N}_{\gamma}(E_{\gamma}) = n_p \,\sigma_{pp} \,c \,\int_0^1 dx \,\frac{E_{\gamma}}{x} \,K \,\left(\frac{E_{\gamma}}{x}\right)^{-\alpha} \,\left[\frac{x}{E_{\gamma}} \,Fp \to \gamma \left(x\right)\right]$$

$$\dot{N}_{\gamma}(E_{\gamma}) = n_p \,\sigma_{pp} \,c \,\int_0^1 dx \,\frac{E_{\gamma}}{x} \,K \,\left(\frac{E_{\gamma}}{x}\right)^{-\alpha} \,\left[\frac{x}{E_{\gamma}} \,Fp \to \gamma \left(x\right)\right]$$

$$\dot{N}_{\gamma}(E_{\gamma}) = n_p \,\sigma_{pp} \,c \,K \,E_{\gamma}^{-\alpha} \int_0^1 dx \,x^{\alpha-1} \,F_{p \to \gamma}\left(x\right)$$

$$\int_0^1 dx \ x^{\alpha - 1} \ F_{p \to \gamma}(x) = Z_{p \to \gamma}(\alpha)$$

$$\dot{N}_{\gamma}(E_{\gamma}) = [K_p \,\sigma_{pp} \,c \,n_p \,Z_{p \to \gamma}] \,E_{\gamma}^{-\alpha}$$
$$\dot{N}_{\gamma}(E_{\gamma}) = K_{\gamma} \,E_{\gamma}^{-\alpha}$$

3. Neutrinos versus Gamma Rays

- Ratio $(\nu + \overline{\nu})/\gamma$
- Ratio $\nu/\overline{\nu}$
- Gamma Ray "Leptonic emission"
- Gamma Ray absorption

IF the population of relativistic protons inside an astrophysical source is a power law of exponent alpha

$$N_p(E) \simeq K E^{-\alpha}$$

Then to a reasonably good approximation the neutrino and photon emissions are also power laws with the same exponent.

$$\dot{N}_{\nu}(E_{\nu}) \simeq K_{\nu} E_{\nu}^{-c}$$

$$\dot{N}_{\gamma}(E_{\gamma}) = K_{\gamma} \ E_{\gamma}^{-\alpha}$$

 $\dot{N}_{\nu}(E_{\nu}) = K_{\nu} E_{\nu}^{-\alpha}$ $\simeq K_p \sigma_{pp} c n_{gas} Z_{pp \to \nu}(\alpha) E_{\nu}^{-\alpha}$

$Z_{pp\to\nu}(\alpha) \simeq Z_{pp\to\pi^{\pm}}(\alpha) \times Z_{\pi^{\pm}\to\nu}(\alpha)$

$$\frac{dN_{a\to b}}{dE_a} \simeq \frac{1}{E_b} F_{a\to b} \left(\frac{E_a}{E_b}\right)$$

$$Z_{a\to b}(\alpha) = \int_0^1 dx \ x^{\alpha-1} \ F_{a\to b}(x)$$

$$Z_{a \to b}(\alpha = 1) = \langle N_b \rangle$$

$$Z_{a \to b}(\alpha = 2) = \langle x_b \rangle = \frac{\langle E_b \rangle}{E_a}$$

"Isospin symmetry"

$$\pi^+ \simeq \pi^- \simeq \pi^\circ$$

 $Z_{pp \to \pi^+} \simeq Z_{pp \to \pi^-} \simeq Z_{pp \to \pi^0}$

 $\frac{\nu}{\gamma} \simeq \frac{2 \ Z_{\pi^{\pm} \to \nu}}{Z_{\pi^0 \to \gamma}}$

Ratio Neutrinos/Photon (pion production dominated)

 $\phi(\nu) / \phi(\gamma)$

Ratio Neutrino-Photon (numerical calculation)

"Signature" of the hadronic mechanism:

on the photon spectrum

Look again to the decay spectrum

$$E_{\gamma,\min} = E_{\pi} \left(1 - \beta_{\pi}\right)$$
$$E_{\gamma,\max} = E_{\pi} \left(1 + \beta_{\pi}\right)$$
$$E_{\gamma,\max} = E_{\pi} \left(1 + \beta_{\pi}\right)$$

Low energy photons can only be produced by High energy pions

$$E_{\gamma,\min} = E_{\pi} (1 - \beta_{\pi})$$
$$E_{\gamma,\max} = E_{\pi} (1 + \beta_{\pi})$$

$$E_{\pi,\min}(E_{\gamma}) = E_{\gamma} + \frac{m_{\pi}^2}{4 E_{\gamma}} = \frac{m_{\pi}}{2} \left[\frac{2E_{\gamma}}{m_{\pi}} + \frac{m_{\pi}}{2 E_{\gamma}} \right]$$

[symmetry for "reflections" around $E_{\gamma} = m_{\pi^{\circ}}/2$]

Gamma ray spectrum as convolution of the π° spectra

$$\frac{d\dot{N}_{\gamma}}{dE_{\gamma}}(E_{\gamma}) = \int_{E_{\pi,\min}(E_{\gamma})}^{\infty} dE_{\pi} \ \frac{dN_{\pi}}{dE_{\pi}}(E_{\pi}) \ \frac{dN_{\pi^{\circ}\to\gamma}}{dE_{\gamma}}(E_{\gamma},E_{\pi})$$
$$= \int_{E_{\gamma}+m_{\pi}^{2}/(4E_{\gamma})}^{\infty} dE_{\pi} \ \frac{dN_{\pi}}{dE_{\pi}}(E_{\pi}) \ \frac{1}{\sqrt{E_{\pi}^{2}-m_{\pi}^{2}}}$$

$$\frac{d\dot{N}_{\gamma}}{dE_{\gamma}}(E_{\gamma}) = \frac{d\dot{N}_{\gamma}}{dE_{\gamma}}(E_{\gamma}')$$
$$\frac{2E_{\gamma}}{m_{\pi}} = \frac{m_{\pi}}{2E_{\gamma}'}$$

For the *hadronic emission mechanism*:

The photon spectra at energies E_{γ} and E'_{γ}

symmetric around $m_{\pi^{\circ}}/2$ are *equal*.

Low energy cutoff

The pion mass = 0.135 GeV

Consequence of

High energy cutoff:

Reflects a possible cutoff in the Proton spectrum

Reconstruction of the Proton population Inside the two SuperNova shells

Cross section

 $p + \gamma \rightarrow \text{hadrons}$

Energy threshold for photo-production: (creation of a single pion):

$$s_{p\gamma} \ge (m_p + m_\pi)^2$$

Rest frame of the proton

$$\varepsilon_{\text{rest}} \ge m_{\pi} + \frac{m_{\pi}^2}{2 \, m_p}$$

Laboratory Frame

$$4 E \varepsilon \ge 2 m_p m_\pi + m_\pi^2$$
$$\varepsilon \ge \frac{1}{4 E_p} \left(2 m_p m_\pi + m_\pi^2 \right)$$

Proton interaction probability per unit time:

$$K_{p\gamma}(E_p) = \sigma_{p\gamma} \otimes n_{\gamma}(\varepsilon)$$

$$K_{p\gamma}(E_p) = \int d\varepsilon \int_{-1}^{+1} \frac{d\cos\theta_{p\gamma}}{2} \left(1 - \cos\theta_{p\gamma}\right) n_{\gamma}(\varepsilon, \cos\theta_{p\gamma}) \sigma_{p\gamma}(\varepsilon_r)$$

Target photon distribution has approximately a power form:

$$n_{\gamma}(\varepsilon) \propto \varepsilon^{-\beta}$$

$$K_{p\gamma}(E_p) \propto E^{\beta}$$

Interaction probability that grows with energy reflecting the target photon spectral shape

Neutrino emission:

 $\frac{dN_{\nu}}{dE} \propto E_{\nu}^{-\alpha+\beta-1}$

 $\frac{dN_{\nu}}{dE} \propto E_{\nu}^{-\alpha_{\nu}}$

 $\alpha_{\nu} \simeq \alpha - \beta + 1$

Spectral index of the neutrinos reflects the spectral indices of the interacting protons and of the target photons Signatures for a $~p\gamma~$ mechanism of neutrino production:

[Dominance of single pion production]

 $\frac{(\nu + \overline{\nu})}{\gamma} \simeq 2$ $\frac{\nu}{\overline{\nu}} \simeq 2$

Neutrino Cross section $\overline{\nu}_e + e^- \to W^{-*} \to \text{hadrons}$ $\to \mu^- + \overline{\nu}_\mu$

Gamma Ray Absorption:

$$\gamma + \gamma \rightarrow e^+ + e^-$$

$$x = \frac{s}{4 m_e^2} = \frac{E_\gamma \varepsilon \left(1 - \cos \theta_{\gamma \gamma}\right)}{2 m_e^2}$$

$$\sigma_{\gamma\gamma}^{\rm max} \simeq 0.2554 \ \sigma_{\rm Th}$$
$$\simeq 1.70 \times 10^{-25} \ {\rm cm}^2$$

Local (Solar neighborhood) Radiation fields

Silvia Vernetto and P.L. Phys.Rev. D (2016)

Radiation field in different points in the Galaxy

Density plot of the infrared radiation energy density in the Milky Way:

[The ISRF (interstellar radiation field) at infrared/optical wavelengths is dominated by the Galactic emission for r < 25-30 Kpc]

Survival Probabilities for Gamma Rays

Gamma Ray absorption (intergalactic space)

Astronomy E>100 TeV : Galactic Astronomy

Survival Probabilities for Gamma Rays

Gamma Astronomy $E_{\gamma} \lesssim 300 \text{ TeV}$ Possible in all Galaxy $P_{\mathrm{abs}} \lesssim 0.45$ Gamma Astronomy

 $E_{\gamma} \gtrsim 1 \text{ PeV}$

Possible only in a fraction of the Galaxy

 $P_{\rm abs} \lesssim 0.7$ $d \lesssim 8 \; {\rm kpc}$

4. Atmospheric Neutrinos

- "Conventional flux" (π^{\pm} , K decay)
- "Prompt flux" (charm decay)

1. Muons (above few GeV) reach the ground and lose their energy before decay

$$\ell_{\mu,\text{dec}} = c \,\tau_{\mu} \,\beta_{\mu} \,\frac{E_{\mu}}{m_{\mu}}$$
$$\simeq 6.23 \,\left(\frac{E_{\mu}}{\text{GeV}}\right) \,\text{km}$$

2. At high energy charged pions and kaons have decay length much longer than the interaction length:

$$\left\langle P_{\rm dec}^{\pi,K}(E,\theta_{\rm z}) \right\rangle \approx \frac{\varepsilon_{\pi,K}}{E\,\cos\theta_{\rm z}}$$

x (km)

Characteristic zenith angle distribution of Standard atmospheric neutrinos

Angle integrated Neutrino fluxes $\nu + \overline{\nu}$

Angle integrated Neutrino fluxes

Particle	$(m \ h_0)/(c\tau) \ ({\rm GeV})$	B.R.	Decay Mode
π^+	114	1	$\mu^+ \nu_{\mu}$
π^{-}	114	1	$\mu^- \overline{ u}_{\mu}$
K^+	844	0.634	$\mu^+ \nu_{\mu}$
K^+	844	0.0487	$\pi^{\circ} e^{+} \nu_{e}$
K^+	844	0.0327	$\pi^{\circ} \mu^{+} \nu_{\mu}$
K^-	844	0.634	$\mu^- \overline{ u}_{\mu}$
K^-	844	0.0487	$\pi^{\circ} e^{-} \overline{\nu}_{e}$
K^-	844	0.0327	$\pi^{\circ} \mu^{-} \overline{\nu}_{\mu}$
K_L	203	0.194	$\pi^+ e^- \nu_e (\pi^- e^+ \overline{\nu}_e)$
K_L	203	0.136	$\pi^+ \mu^- \nu_\mu (\pi^- \mu^+ \overline{\nu}_\mu)$
D^+	$3.8 imes10^7$	0.172	$e^+ \nu_e X \ (\mu^+ \nu_\mu X)$
D^{-}	$3.8 imes10^7$	0.172	$e^- \overline{\nu}_e X \ (\mu^- \overline{\nu}_\mu X)$
D^0	$9.6 imes10^7$	0.0687	$e^+ \nu_e X \ (\mu^+ \nu_\mu X)$
\overline{D}^0	$9.6 imes10^7$	0.0687	$e^- \overline{\nu}_e X \ (\mu^- \overline{\nu}_\mu X)$
Λ_c	$2.4 imes 10^8$	0.045	$e^+ \overline{\nu}_e X \ (\mu^+ \nu_\mu X)$
D_s^+	$8.5 imes10^7$	0.064	$\tau^+ \nu_{\tau}$
D_s^{-}	$8.5 imes10^7$	0.064	$ au^- \overline{ u}_ au$

IceCube fit of the "extraterrestrial component" (per each flavor)

[flux ratios]

	Atmospheric	Atmospheric	Astrophysical	
	"Standard"	"Prompt"	(p-gas)	$(p-\gamma)$
$\nu_e + \overline{\nu}_e$	1	1	1	1
$ u_{\mu} + \overline{ u}_{\mu} $	40	1	1	1
$\nu_{\tau} + \overline{\nu}_{\tau}$	~ 0	0.1	1	1
$\mu^{+} + \mu^{-}$	130	0.85	_	
γ/ u			1	1.5

	Atmospheric	Atmospheric	Astrophysical	
	"Standard"	"Prompt"	(p-gas)	$(p-\gamma)$
$\nu_e + \overline{\nu}_e$	1	1	1	1
$ u_{\mu} + \overline{ u}_{\mu}$	40	1	1	1
$\nu_{ au} + \overline{ u}_{ au}$	~ 0	0.1	1	1
$\mu^+ + \mu^-$	130	0.85	_	_
γ/ u	—	—	1	1.5

1. More ν_{μ} than ν_{e} 2. Absence of ν_{τ} 3. More μ than ν_{μ} 2-body decay of pion/kaon Decay forbidden (tau mass) Kinematics of pion decay

$$\pi^+
ightarrow \mu^+
ightarrow
u_{\mu^+}
ightarrow \overline{
u_{\mu^-}}
ightarrow
u_{\mu^-}
i$$

Charged Pions decay into muon-neutrinos

Electron neutrinos generated by 3-body decays of kaons.

[2-body decay V-A structure of the interaction]

$$\frac{\Gamma(\pi^+ \to e^+ + \nu_e)}{\Gamma(\pi^+ \to \mu^+ + \nu_\mu)} = \left(\frac{m_e}{m_\mu}\right)^2 \left(\frac{m_\pi^2 - m_e}{m_\pi^2 - m_\mu^2}\right)^2 = 1.28 \times 10^{-4}$$

	Atmospheric	Atmospheric	Astrophysical	
	"Standard"	"Prompt"	(p-gas)	$(p-\gamma)$
$\nu_e + \overline{\nu}_e$	1	1	1	1
$ u_{\mu} + \overline{ u}_{\mu}$	40	1	1	1
$ u_{ au} + \overline{ u}_{ au}$	~ 0	0.1	1	1
$\mu^{+} + \mu^{-}$	130	0.85	_	
γ/ u	—	—	1	1.5

1. Equal ν_{μ} and ν_{e} Universality2. Small (10%) ν_{τ} 2 body decay of Ds3. slightly less μ than ν_{μ}

	Atmospheric	Atmospheric	Astrophysical	
	"Standard"	"Prompt"	(p-gas)	$(p-\gamma)$
$\nu_e + \overline{\nu}_e$	1	1	1	1
$ u_{\mu} + \overline{ u}_{\mu}$	40	1	1	1
$\nu_{\tau} + \overline{\nu}_{\tau}$	~ 0	0.1	1	1
$\mu^{+} + \mu^{-}$	130	0.85	—	
γ/ u		—	1	1.5

1. Equal $u_{\mu} \quad
u_{e} \text{ and }
u_{ au}$

	Atmospheric	Atmospheric	Astrophysical	
	"Standard"	"Prompt"	(p-gas)	$(p-\gamma)$
$\nu_e + \overline{\nu}_e$	1	1	1	1
$\nu_{\mu} + \overline{\nu}_{\mu}$	40	1	1	1
$\nu_{\tau} + \overline{\nu}_{\tau}$	~ 0	0.1	1	1
$\mu^{+} + \mu^{-}$	130	0.85	—	1 5
γ/ u			1	[1.5]

In principle key role for

 ν_{τ}

5. The Gamma Ray sky

- Diffuse Galactic Flux
- Galactic Sources
- Extragalactic Sources

1. Ensemble of (quasi)-point sources

2. Diffuse Galactic Flux

(generated by cosmic rays magnetically confined in the Milky Way)

3. Isotropic flux.

(attributed to an ensemble of unresolved extragalactic sources)

Diffuse Emission

Fermi–LAT counts Galactic coordinates

energy range 200 MeV to 100 GeV^+

Decomposition of the diffuse Galactic flux

Description reasonably successful. [but-several ambiguities and open problems remain.]

$$e^{\pm} + Z \rightarrow e^{\pm} + \gamma + Z$$

Bremsstrahlung

$$e^{\pm} + Z \rightarrow e^{\pm} + \gamma + Z$$

Angular distribution of the diffuse Galactic emission

3rd FERMI Catalog

3034 sources

E > 100 MeV

3034 3rd catalog sources [approximately 440 are galactic]

TeV Sky $170 \rightarrow 200$ Sources

blue-to-red colors -> 0.1 GeV – Fermi gamma-ray sky

Firm identifications

HESS survey of Galactic Plane [ICRC 2015] 77 "firm identifications"

Isotropic (extragalactic) flux

Gamma Rays in [1-100 GeV] energy interval.

$$\begin{split} \Phi_{\rm sources}^{\rm poles} &= \sum_{j} \phi_{j} = 1.92 \times 10^{-6} \ {\rm cm}^{-2} \, {\rm s}^{-1} & \text{Resolved flux} \\ \phi_{\rm iso} \ \Delta\Omega &= 1.63 \times 10^{-6} \ {\rm cm}^{-2} \, {\rm s}^{-1} & \text{Unresolved flux} \\ \Phi_{\rm extra} &\simeq \frac{4\pi}{\Delta\Omega} \ \Phi_{\rm sources}^{\rm poles} + 4\pi \ \phi_{\rm iso} \\ &\simeq 5.5 \times 10^{-6} \ {\rm cm}^{-2} \, {\rm s}^{-1} \\ \phi_{\rm max} / \Phi_{\rm extra} \simeq 0.018 \end{split}$$

What has Fermi found: The LAT two-year catalog

Johannes Kepler, *De Stella Nova in Pede Serpentarii* (1606)

The SuperNova "Paradigm" for CR acceleration

Powering the galactic
Cosmic Rays
$$L_{\rm cr}({
m Milky Way}) \simeq rac{
ho_{
m cr} V_{
m conf}}{T_{
m conf}}$$

 $\simeq 2 imes 10^{41} \left(rac{
m erg}{
m s}
ight)$

• ENERGETICS

DYNAMICS [Diffusive Shock acceleration]

HESS Telescope

Observations with TeV photons

SuperNova RX J1713.7-3946

Comparison with ROSAT observation

The CRAB Nebula

6 arcminutes

1 minute = 0.58 pc= 1.8 * 10¹⁸ cm

M87

Observations in radio

 $\lambda = 3.5~\mathrm{cm}$

"Two pairs of bright radio condensations"

The Galactic Center

M87

CENTAURUS A

First object imaged with Cosmic Rays ?

GRB : associated with a subset of SN Stellar Gravitational <u>Collapse</u>

6. Astrophysical Neutrinos

- Extragalactic neutrinos
- Diffuse Galactic Neutrinos
- Neutrino Point Sources

GALACTIC

EXTRAGALACTIC

Cosmic Rays

Extragalactic Sources

$$q(E) = \frac{d\dot{N}_{\nu,\gamma}(E)}{dE}$$

Number of particles emitted (isotropically) per unit time and unit energy

Luminosity
$$L = \int dE \ E \ q(E)$$
 of the source:

Flux from a source at redshift z :

$$\phi(E) = q[E(1+z)] \frac{1}{4\pi r^2(z)} \left(\frac{dt_{\text{emission}}}{dt_{\text{obs}}}\right) \left(\frac{dE_{\text{emission}}}{dE_{\text{obs}}}\right)$$

$$\phi(E) = \frac{q[E(1+z)]}{4\pi r^2(z)}$$

$$r(z) = \frac{c}{H_0} \int_0^z \frac{dz}{\sqrt{1 + \Omega_{\rm r} (1 + z)^4 + \Omega_{\rm m} (1 + z)^3 + \Omega_{\Lambda}}}$$

Flux observed at the Earth from this source:

The redshift defines the time when a particle was produced

For linear propagation of a massless particle this also determines the space coordinate Flux observed at the Earth from this source:

$$\phi(E, z) = \frac{1}{4\pi r^2(z)} q[E(1+z)]$$
"comoving distance"
"energy redshift"
$$r(z) = \int_0^z \frac{dz'}{H(z')}$$

$$= \frac{c}{H_0} \int_0^z \frac{dz'}{\sqrt{1+\Omega_r (1+z')^4 + \Omega_m (1+z')^3 + \Omega_\Lambda}}$$

Bolometric energy flux from a source at redshift z

$$\phi(E) = \frac{q[E(1+z)]}{4\pi r^2(z)}$$

$$\mathcal{F} = \int_0^\infty dE \ E \ \phi(E)$$

$$= \frac{1}{4 \pi r^2(z)} \int dE \ E \ q[E(1+z)]$$

$$= \frac{1}{4\pi r^2(z)} \frac{1}{(1+z)^2} \int_0^\infty dE' E' q(E')$$

$$= \frac{L}{4 \pi r^2(z) (1+z)^2}$$

$$egin{aligned} \mathcal{F} &= rac{L}{4 \, \pi \, d_L^2(z)} \ d_L(z) &= r(z) \left(1+z
ight) \end{aligned}$$

Flux from the sum of all extragalactic sources

 $\langle q(E,z) \rangle$

Average emission per unit time, unit volume, unit of energy [at time t (or redshift z)]

All identical sources:

$$\langle q(E,z)\rangle = n_{\text{sources}}(z) q_s(E)$$

The generalization for multiple types of sources is straightforward (summing over all "classes" or types of sources)_

$$\phi_{\text{extra}}(E) = \frac{1}{4\pi} \int_0^\infty dz \, \frac{dV}{dz} \, \frac{\langle q[E(1+z)] \rangle}{4\pi \, r^2(z)}$$

$$\frac{dV}{dz} = 4\pi r^2(z) \frac{dr}{dz}$$

$$\frac{dr}{dz} = \frac{1}{h(z)}$$

 $h(z) = \sqrt{1 + \Omega_{\rm r} \left(1 + z\right)^4 + \Omega_{\rm m} \left(1 + z\right)^3 + \Omega_{\Lambda}}$

$$\phi_{\text{extra}}(E) = \frac{1}{4\pi} \frac{c}{H_0} \int_0^\infty \frac{dz}{h(z)} \left\langle q[E(1+z)] \right\rangle$$

Total sum of extragalactic sources:

$$\phi_{\text{extra}}(E) = \frac{1}{4\pi} \frac{c}{H_0} \int_0^\infty \frac{dz}{h(z)} \left\langle q[E(1+z)] \right\rangle$$

Derivation assuming *linear propagation* of the particles [and no absorption or energy losses (except for the universal redshift effects)]

Alternative (and simpler) derivation that is also valid For non linear propagation (Cosmic Rays) Relation between an isotropic flux and the (ultra-relativistic) particle density

$$\phi(E) = \frac{c}{4\pi} \ n(E)$$

Compute the density (now) of particles need to integrate over the history of the injection

$$n(E) = \int dt \int dE_0 \left\langle q(E_0, t) \right\rangle \,\delta\left[E - \frac{E_0}{(1+z)}\right]$$

$$n(E) = \int_0^\infty dz \left| \frac{dt}{dz} \right| (1+z) \left\langle q[E(1+z), z] \right\rangle$$

$$n(E) = \int_0^\infty dz \left| \frac{dt}{dz} \right| (1+z) \left\langle q[E(1+z), z] \right\rangle$$

$$n(E) = \frac{1}{H_0} \int_0^\infty \frac{dz}{h(z)} q[E(1+z), z]$$

$$\phi_{\text{extra}}(E) = \frac{c}{4\pi} \frac{1}{H_0} \int_0^\infty \frac{dz}{h(z)} \left\langle q[E(1+z)] \right\rangle$$

The "Olbers (Kepler) Paradox"

Static, Homogeneous, Euclidean space Filled with identical sources of Luminosity L

$$\ell = \frac{L}{4 \,\pi \, R^2}$$

Apparent luminosity of a source ad distance R

Isotropic flux generated by the ensemble of all (extragalactic) sources in the universe.

Homogeneous (in average) density of sources: spherical shells between radii: 1, 2, 3, 4,

All spherical shells contribute equally.: DIVERGENCE!

Homogeneous (in average) density of sources: spherical shells between radii: 1, 2, 3, 4,

All spherical shells contribute equally.: DIVERGENCE!

Divergence cured By cosmological effects

 $R_{\text{Hubble}} = \frac{c}{H_0} \simeq 3 \text{ Gpc}$
The 3-dimensional lampposts ensemble "paradox" [Kepler – Olbers paradox].

Linear sequence of lamp-posts:

Most of the light you receive from the nearest lamppost

3D ensemble of lampposts: [Euclidean static space]

Light diverges !

Diffuse contribution

"Resolved" sources

Relation between The diffuse flux And the detected Point Sources

$$\frac{dN_s}{d\ell} = \frac{dN_s}{dR} \frac{dR}{d\ell} = 4\pi n_s \left[R^2 \left| \frac{d\ell}{dR} \right|^{-1} \right]_{R=\sqrt{\frac{L}{4\pi}}} = 4\pi n_s \left(\frac{L}{4\pi} \right)^{3/2} \frac{\ell^{-5/2}}{2}$$

$$N_s(\geq \ell_{\min}) = \int_{\ell_{\min}}^{\infty} d\ell \ \frac{dN_s}{d\ell} = n_s \ \frac{4\pi}{3} \ \left(\frac{L}{4\pi \ \ell_{\min}}\right)^{3/2}$$

$$R_{\ell_{\min}} = \sqrt{L/(4\pi\ell_{\min})}$$

$$N_s(\geq \ell_{\min}) \propto R_{\ell_{\min}}^3 \propto \ell_{\min}^{-3/2}$$

Energy Flux[$\geq \ell_{\min}$] $\propto \ell_{\min} R_{\ell_{\min}}^3 \propto \ell_{\min}^{-1/2}$

Extragalactic contribution

MILKY WAY

LARGE MAGELLANIC CLOUD

SMALL MAGELLANIC CLOUD

"Bubble" of cosmic rays generated in the Milky Way and contained by the Galaxy magnetic field

Space extension and properties of this "CR bubble" remain very uncertain

(high energy) Extra-galactic CR crossing the Galaxy.

Piece of extragalactic space: Non MilkyWay-like sources

IceCube astrophysical neutrino signal

Effects of absorption on the angular distribution of the neutrinos

Excess around the Galactic Disk ?

NEUTRINO POINT SOURCES

Prediction of the neutrino flux from the observed photon flux [+ additional information]

 $\phi_{\nu_{\alpha}}(E)$

Multi-wavelength observations

 $\phi_{\gamma}(E)$

Earth

Astrophysical source

1			Table 3. Galactic sources.				
3	RA (hm)	Dec (° ′)	Flux ^a	Γ^{b}	s ^c	Туре	Association ^d
G1	02 40	+61 15	2.7	2.6	р	XRB	LSI+61 303 E0241+6103
G2	05 35	+2201	22-37	2.4 - 2.8	р	PWN	Crab nebula
G3	06 16	+22 31	0.6	3.1	р	SNR	IS443
G4	06 33	+05 21	0.9	2.5	р	UID	Monoceros? E0634-0521?
G5	08 35	-45 34	9	1.7, 3.4 1.5(14)	e	PWN	Vela X
G6	08 52	-4620	21	2.1	m	SNR?	R0852-4622
G7	10 23	-57 45	4.5	2.5	e stel	UID lar cluster	Westerlund2 in H II region
G8	13 02	-6349	1.3	2.7	р	BP	P1259-63
G9	13 03	-63 11	4.3	2.4	e	UID	
G10	14 18	-6058	2.6	2.2	e	PWN?	G313.3+0.1?
G11	14 20	-60 45	3.5	2.2	e	PWN?	P1420-6048? E1420-6038?
G12	14 28	-6051	1.3	2.2	e	UID	
G13	14 42	-6229	2.7	2,5	e	SNR	RCW86
G14	15 14	-59 09	5.7	2.3	e	PWN	MSH15-52 P1509-58
G15	16 14	-5149	8.1	2.5	e	UID	
G16	16 16	-5053	6.7	2.4	e	PWN?	P1617-5055
G17	16 26	-4905	4.9	2.2	e	UID	
G18	16 32	-4749	5.3	2.1	e	UID	I16320-4751?
G19	16 34	-47 16	2.0	2.4	e	UID	I16358-4726? G337.2+0.1?
G20	16 40	-46 31	3.0	2.4	р	UID	G338.3-0.0? E1639-4702?
G21	17 02	-42.04	9.1	2.1	e	UID	P1702-4128?
G22	17 08	-4104	2.7	2.5	p	UID	
G23	17 13	-3811	0.7	2.3	e	UID	G348.7+0.3?
G24	17 13	-3945	17	23	m	SNR	R1713 7-3946
021	., 15	0710	19	2.0(12)		Grat	G347.3-0.5?
G25	17 18	-3833	0.3	0.7(6)	e	PWN?	
G26	16 32	-3443	6.1	2.3	e	UID	
CR/	AB I	Nebu	la				

SNR: RX 1713.7 -3946 (SN 393A)

SNR:

R0952-4622 (Vela Junior)

	RA	Dec		Tuble 4. 0	underiv	e sources	continued.
	(h m)	(° ′)	Flux ^a	$\Gamma^{\mathfrak{b}}$	s ^c	Туре	Association ^d
G27	17 45	-29 00	2.5	2.2	р	UID (G	alactic Center)
G28	17 45	-3022	2.5	1.8	e	UID	E1744-3011?
G29	17 47	-2809	0.8	2.4	р	SNR?	G0.9+0.1
G30	18 00	-2400	1.9	2.5	e	SNR?	W28
			0.8	2.7	e	molecular cloud	
G31	18 04	-2142	5.7	2.7	e	UID	G8.7-0.1
							P1803-2137?
G 32	18 10	-19.18	4.6	2.2	e	PWN?	
333	18 13	-17 50	2.7	2.1	p?	UID	G12.82-0.02?
G 34	18 26	-13 44	20	2.4	m	PWN	G18.0-0.7
			21	2.2(25)			P1826-1334
335	18 26	-14 49	1.9	2.1	р	XRB	LS 5039
			2.3/0.1	1.9/2.5	gam	ıma ray flu	ix varies with 3.9d
G 36	18 33	-1033	0.5	2.1	p	SNR	G21.5-0.9
						PWN	P1833-1034
G 37	18 34	-0845	2.6	2.5	e	UID	G23.3-0.3
							W41?
J 38	18 37	-06 56	5.0	2.3	e	UID	G25.5+0.0
G 39	18 41	-0533	12.8	2.4	e	UID	
G40	18 46	-0259	0.6	2.3	р	SNR?	Kes75
					e	PWN?	P1846-0258
G41	18 57	+02 40	6.1	2.4	e	UID	
G42	18 58	+02.05	0.6	2.2	p?	UID	
G43	19 08	+0630	$8.8^{\rm h}$	2.3	e	SNR?	G40.5-0.5
			3.2	2.1			
G44	19 12	+1010			e	PWN?	P1913+1011?
G45	19 58	+35 12	2.3 ^g	3.2	p	XRB	Cvg X-1
G46	20 19	+3700	8.7^{h}	2.3	e	PWN?	G75.2+0.1
G47	20 32	+41 30	0.6	1.9	e	UID	Cyg OB2?
			9.8 ^h	2.3		?	
G 48	23 23	+5849	0.7	2.5	n?	SNR	Cas A

^a Flux in the unit of 10^{-12} cm⁻² s⁻¹ TeV⁻¹ at 1 TeV.

^b Spectral index Γ when fitted by $E^{-\Gamma}$. See text for details.

^c p: point-like, e: extended. m: morphological structure studied.

GALACTIC TeV catalog

	RA	Dec	Flux ^a	$\Gamma^{\mathfrak{b}}$	z ^c	Name
E1	02 32 53.2	+20 16 21	0.62	2.5	0.140	1ES 0229+200
E2	03 49 23.0	-11 58 38	0.45	3.1	0.188	1ES 0347-121
E3	05 50 40.8	-32 16 18	~0.3	2.8	0.069	PKS 0548-322
E4	10 15 04.1	+49 26 01	~ 0.3	4.0	0.212	1ES 1011+496
E5	s11 03 37.7	-23 29 31	0.4	2.9	0.186	1ES 1101-232
E6	11 04 27.6	+38 12 54	12–97	2.4-3.1(3)	0.031	Mkn 421
E7	11 36 26 4	+70 07 28	0.9	33	0.046	Mkn 180
E8	12 21 22 1	+301037	13	3.0	0.182	1ES 1218+304
E9	12 30 54.4	+122417	1	2.9	0.004	M87
E10	12 56 11.1	-054722	e	2.0	0.536	3C279
E11	14 28 32.7	+42 40 20	1-2	2.6-3.7	0.129	H 1426+428
E12	15 55 43.2	+11 11 21	0.1-0.2	4.0	0.36?	PG1553+113
E13	16 53 52.1	+39 45 37	0.5 - 100	1.9 - 2.3(5)	0.034	Mkn 501
E14	19 59 59.9	+65 08 55	4-120	2.7-2.8	0.047	1ES 1959+650
				1.8(4 - 10)		
E15	20 09 29.3	-48 49 19	0.2	4	0.071	PKS 2005-489
E16	21 58 52.7	-30 13 18	2–3	3.3-3.4	0.116	PKS 2155-304
E17	22 02 43.3	+42 16 40	~0.3	3.6	0.069	BL Lacetae
E18	23 47 06.0	+51 42 30	1-5	2.3-2.5	0.044	1ES 2344+514
E19	23 59 07.9	-303741	~0.3	~3.1	0.165	H 2356-309

 Table 5. Extragalactic sources.

^a Flux in the unit of 10^{-12} cm⁻² s⁻¹ TeV⁻¹ at 1 TeV.

^b Spectral index Γ when fitted by $E^{-\Gamma}$. ^c Red shift.

extra-GALACTIC TeV catalog

From the Neutrino Flux to the Muon induced signal.

$$N_{\mu\uparrow} \simeq 7.5 \times \left(\frac{L}{10^{34} \text{ erg/s}}\right) \left(\frac{\text{Kpc}}{r}\right)^2 \left(\frac{A t}{\text{Km}^2 \text{ year}}\right)$$
$$N_{\mu\uparrow} \simeq 0.4 \times \left(\frac{L}{10^{46} \text{ erg/s}}\right) \left(\frac{A t}{\text{Km}^2 \text{ year}}\right) \frac{1}{z^2}$$

Line : 1 (muon event)/(km2 yr)

Have FLUX:
Flux (
$$E_g > 1 \text{ TeV}$$
) = 0.11 - 2.1
UNIT: $10^{-11} (\text{cm}^2 \text{ s})^{-1}$

Three Brightest sources in the TeV sky:

CRAB NEBULA 2 young SNR Vela Junior RX 1713.7-3946

 $\Phi(E > 1 \text{ TeV}) \simeq 10^{-11} (\text{cm}^2 \text{ s})^{-1}$

TeV Photons in a Cherenkov Telescope $\sim 10 \frac{\text{events}}{\text{hour}}$

 $\phi(E) \propto E^{-2}$

Up-going muons Neutrino telescope

 $\sim 2 \; \frac{\mathrm{events}}{\mathrm{Km}^2 \, \mathrm{yr}}$

Importance of cutoff !!

BACKGROUND

Atmospheric Neutrinos

Angular Distribution of the Neutrino – induced Muons

Cone Radius (degrees)

IF TEV emission of the Brightest TeV sources is of hadronic nature

detection with neutrinos is within reach Few events / (km2 yr)

...but

NOT EASY !

7. Outlook

- Neutrino Oscillations
- Dark Matter studies
- What can we learn with neutrinos that we cannot learn with gamma rays ?

Neutrino Mass Hierarchy:

Electro-neutrino event rate rate:

$$S_e^{(\text{no osc})} = \phi_{\nu_e} \ \sigma_{\nu_e}$$
$$S_e = \left[\phi_{\nu_e} \ P_{\nu_e \to \nu_e} + \phi_{\nu_\mu} \ P_{\nu_\mu \to \nu_e}\right] \ \sigma_{\nu_e}$$
$$S_{\overline{e}}^{(\text{no osc})} = \phi_{\overline{\nu}_e} \ \sigma_{\overline{\nu}_e}$$

 $S_{\overline{e}} = \begin{bmatrix} \phi_{\overline{\nu}_e} & P_{\overline{\nu}_e \to \overline{\nu}_e} + \phi_{\overline{\nu}_\mu} & P_{\overline{\nu}_\mu \to \overline{\nu}_e} \end{bmatrix} \sigma_{\overline{\nu}_e}$
Sum: Electron Neutrinos + Anti-neutrinos

[Large excess : Normal Mass hierarchy Small excess : Inverse Mass hierarchy

Sum: Electron Neutrinos + Anti-neutrinos

[Large excess : Normal Mass hierarchy Small excess : Inverse Mass hierarchy

Indirect searches for DARK MATTER

Energy Loss Mechanisms for Protons:

Greisen-Zatsepin- Kuzmin (GZK) suppression

NEUTRINO PRODUCTION

Proton Energy Evolution with Redshift

High Energy Proton Horizon

Neutrino Astronomy: beyond the "Km3 concept"

Radio, Acoustic,.....

V ð ₿ 0 ð

000 0000

Ü

ÿ Ö Ö

V 00000 *** 9

ÿ 8 ĺ

Radio Detection of neutrinos

ANITA-II over Antarctica

FIG. 3: Events remaining after unblinding. The Vpol neutrino channel contains two surviving events. Three candidate UHECR events remain in the Hpol channel. Ice depths are from BEDMAP [12].

http://arxiv.org/abs/1003.2961 RICAP25-05-2011 Tom Gaisser Vpol:1 neutrino candidate; HPol:2525 1019 eV

RICE experiment architecture

- Antarctic ice is neutrino target
- In-ice array of radio antennas
- 20 channels, 200-500 MHz
- Depths 100-300 meters
- Signal digitized at the surface
- Deployed near South Pole Station

10⁷ to 10¹¹ GeV: Radio ice Cherenkov detection Askaryan Radio Array (ARA)

- a very large radio neutrino detector at the South Pole

Ref: Allison et al., Astropart.Phys. 35 (2012) 457-477, arXiv:1105.2854 (Design and performance paper)

Scientific Goal:

- Discover and determine the flux of highest energy cosmic neutrinos.
- Understanding of highest energy cosmic rays, other phenomena at highest energies.

Method:

Monitor the ice for radio pulses generated by interactions of cosmic neutrinos with nuclei of the 2.8km thick ice sheet at the South Pole Poster session at this conference:

- \rightarrow H. Landsman, ARA Design and Status
- ightarrow J. Davies, ARA prototype and first station

Motivations for High Energy Neutrino Astronomy

1. Separating the "Hadronic" and "Leptonic" mechanism for gamma ray emission.

Study of the separate populations of Electrons (positrons) and protons/nuclei in astrophysical sources.

[Here the competition are multi-wavelength studies (synchrotron versus Inverse Compton)

2. Study of "absorbed sources" where the gamma rays cannot reach us. (Extragalactic sources E > 1 TeV) (GZK neutrinos)