

EUCLID SPACE MISSION

(a few whys and hows)

R. Scaramella (on behalf of Euclid Science Team and E. Consortium)

(Euclid Consortium, old timer, Mission Survey Scientist, member of the EC Board and EST)

Lots of figures and material courtesy of: EC&ESA (SciRD, CalWG, ECSURV, ESSWG, VIS, NISP, SWGs, OUs ...)

Red Book released in July 2011 (ESA web pages)

kosmobob@oa-roma.inaf.it

Giga structures-years-pc-samples

FIGURE 2-5 The cosmic timeline, from inflation to the first stars and galaxies to the current universe. The change in the vertical width represents the change in the rate of the expansion of the universe, from exponential expansion during the epoch of inflation followed by long period of a slowing expansion during which the galaxies and large scale structures formed through the force of gravity, to a recent acceleration of the expansion over the last roughly billion years due to the mysterious dark energy. Credit: NASA Wilkinson Microwave Anisotropy Probe Science Team.

Observed with a mini structure: mirror ~1.2 m \varnothing

Open Questions in Cosmology

- Nature of the Dark Energy
- Nature of the Dark Matter
- Initial conditions (Inflation Physics)
- Modifications to Gravity
- Formation and Evolution of Galaxies

Large ignorance on ~95% of Universe content !!

1. Why 2. How 1. Dark Energy & Dark Matter (Cosmology) ; Legacy

2. Space imaging (morphology & NIR) + Spectra:
Grav. Lensing & BAO

3. 2020-2025+

	N	/lain Sci	ientific	Objectives						
 Understand the nata Reach a dar 1 sigma error Measure γ, 	the energy FoM > 400 usin by w_p and w_a of 0.02 a the exponent of the grow	Dark Ma g only w nd 0.1, 1 wth facto	atter by weak le respect or, with	: nsing and gala ively. a 1 sigma pre	xy cluste	ering; the formation of < 0.02	nis roughl 2, sufficie	y corresponds to ent to distinguish	All da	ata
General Rel	ativity and a wide range of	of modi	fied-gra	wity theories			Í	č		1
• Test the Co	old Dark Matter paradig	m for l	hierach	ical structure	ormatio	n and	measure	the sum of the		
neutrino ma	sses with a 1 sigma precis	sion bet	ter thar	0.03 eV	omutio	ii, uiiu	measure	the built of the		
Constrain <i>n</i>	the spectral index of r	rimordi	ial now	er spectrum to	percen	t accur	acy wher	combined with		
Planck, and	to probe inflation model	s by me	asuring	the non-Gaus	ianity of	f initial	conditio	ns parameterised		
by $f_{\rm MI}$ to a 1	sigma precision of ~ 2 .)	2	,				- I		
J J NL			SURVE	YS					1	
	Area (deg2)				Desc	ription				
Wide Survey	15,000 (required) 20,000 (goal)		Step and stare with 4 dither pointings per step.							
,									100	
Deep Survey	40			In at le	ast 2 pat	ches of	> 10 deg	2		IUU
I I I I I I J				2 magnitu	des deep	er than	wide sur	vev		
			PAYLO	AD	r				1	
Telescope		1.2 m	Korsel	n. 3 mirror anas	tigmat, f	f=24.5	m			
Instrument	VIS	VIS NISP							100	
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$	$0.763 \times 0.722 \text{ deg}^2$								
Capability	Visual Imaging		NIR	Imaging Photo	metry		NIR	Spectroscopy		
Wavelength range	550– 900 nm	Y (92 1146r	0- 1m).	J (1146-1372 nm)	H (1. 2000	372- 00m)	1100-20	000 nm		
Sensitivity	24.5 mag	24 ma	1g	24 mag	24 m	ag	3 10-16	erg cm-2 s-1	1 🔶 Un'	1.1
Seneral ing	10σ extended source	$5\sigma po$	int	5σ point	5σ p	oint	3.50 I	inresolved line		
		source	e	source	sourc	ce	flux			2 -
									🔶 NI)	κ D
Detector	36 arrays			•	16 arra	ays				
Technology	4k×4k CCD			2k×2k NIR s	ensitive	HgCdТ	e detecto	rs		0
Pixel Size	0.1 arcsec			0.3 arcsec			0.3 arcs	ec	🗶 INI!	KS
Spectral resolution	R=250									
		SF	PACECF	RAFT					1	
Launcher	Soyuz ST-2.1 B from	Kourou								
Orbit	Large Sun-Earth Lagrange point 2 (SEL2) free insertion orbit									
Pointing	25 mas relative pointing error over one dither duration									
0	30 arcsec absolute poi	nting er	ror							กรเ
Observation mode	Step and stare, 4 dither frames per field, VIS and NISP common $FoV = 0.54 \text{ deg}^2$							1		
Lifetime	7 years									
Operations	4 hours per day contact, more than one groundstation to cope with seasonal visibility						V15: (opi		
<u>C</u>	variations;		2050 0		1 . V 1		(CIL) a			
Communications	maximum science data	i rate of	850 G	bit/day downiii	IK IN K C	band (2	bGHZ), St	eerable HGA	INISP	'• N
	E	uagets	and Pe	errormance		-	17			• +
in all and a			TAC	Mass (kg)			Nominal	Power (W)	-	
industry			IAS	Astr	um	IAS	5	Astrium	-	
Payload Module			897	696		410		496	-	
Service Module			786	835		647		692	-	
Fropelient			148	232				100	-	
A captor mass/ Harne	ess and PDCU losses pow	er	70	90		65		108	_	
Total Excluding margin)				2160	2160 1368		8	1690	R. Sca	ramel

you need to know (Red Book)

Area (>10⁴ sq deg)

Field (FoV > 0.5 sq deg)

maging hotom litless

ruments: tical imager & VIR imager + grisms

Large participation of Italian community with several key roles and contributions

Euclid Consortium [EC] Structure and Italian role: fundamental

- Presence in the Euclid Science Team
- Presence in the Board
- Several coordinators of science WGs
- Strong presence and respnsabilities in both instruments
- SciRD team and Ubercoords
- Project Manager of the whole Ground Segment
- Project Office of the GS
- Several coordinators of GS Organizational Units
- Position of Mission Survey Scientist
- ~ 200 scientists from many INAF institutes and Universities
- Support from ASI
- Support from PRIN MIUR, ECVO, ERC, local (hardly renewable)

Synergy with Planck: Universe @z~1000 vs @z~1-3

WL sims: <1" pixels

Most of the DE effects happen at z < 3

Need also dynamics to further disentagle

Figure C.1: Effect of dark energy on the evolution of the Universe. Left: Fraction of the density of the Universe in the form of dark energy as a function of redshift z., for a model with a cosmological constant (w=-1, black solid line), dark energy with a different equation of state (w=-0.7, red dotted line), and a modified gravity model (blue dashed line). In all cases, dark energy becomes dominant in the low redshift Universe era probed by DUNE, while the early Universe is probed by the CMB. Right: Growth factor of cosmic structures for the same three models. Only by measuring the geometry (left panel) and the growth of structure (right panel) at low redshifts can a modification of dark energy be distinguished from that of gravity. Weak lensing measures both effects.

euclid

Figure 2.14: a. (left) The growth rate of matter perturbations as a function of redshift. Data points and errors are from a simulation of the spectroscopic redshift survey. The assumed Λ CDM model, coupled dark matter/dark energy modes and DGP are also shown. b. (right): The predicted cosmic shear angular power spectrum at z=0.5 and z=1 for a number of cosmological models

Can discriminate cosmology

[Dark Energy, Dark matter, non std GR]

Wardt	Observational Input	Probe	Description	
	Weak Lensing Survey	Weak Lensing (WL)	Measure the expansion history and the growth factor of structure	
several	Galaxy Redshift Survey: Analysis of <i>P(k)</i>	Baryonic Acoustic Oscillations (BAO)	Measure the expansion history through $D_A(z)$ and $H(z)$ using the "wiggles-only".	
probes		Redshift-Space distortions	Determine the growth <i>rate</i> of cosmic structures from the redshift distortions due to peculiar motions	
tor svnergie		Galaxy Clustering	Measures the expansion history and the growth factor using all available information in the amplitude and shape of P(k)	
and	Weak Lensing plus Galaxy redshift survey combined with cluster mass surveys	Number density of clusters	Measures a combination of growth factor (from number of clusters) and expansion history (from volume evolution).	
XChecks	Weak lensing survey plus galaxy redshift survey combined with CMB surveys	Integrated Sachs Wolfe effect	Measures the expansion history and the growth	

Want to measure expansion factor H(z) - *geometry* - and growth of density perturbations - *dynamics* -

Wide survey: >15,000 sq. deg (visible: 24.5th ABmag 10 σ extended; NIR: 24th ABmag 5 σ ; spectra: H α line flux > 3×10⁻¹⁶ erg s⁻¹ cm⁻², rate ~35%)

Deep Survey: ~40 sq. deg ~ 2 mags deeper (~40 visits)

e g a C

Expansion and Growth Histories through Gravitational Lensing

Figure 2.8: a. (Left) Illustrations of the effect of a lensing mass on a circularly symmetric image. Weak lensing elliptically distorts the image, flexion provides an arc-ness and strong lensing creates large arcs

Bullet Cluster: Dark Matter!

HST I WHEN

Figure 5. Mass map contours in units of $\kappa_{\infty} = 1/3$ laid over the $3/2 \times 3/3$ ST previous figure. Pink squares indicate the 135 multiple image positions all perfectly reproduced by our model, and the white line indicates the convex hull. Outside this region, our solution should be disregarded. This solution is not unique but was the "most physical" we found.

(A color version of this figure is available in the online journal.)

Details on Dark Matter clustering!

- Unique legacy survey: 2 billion galaxies imaged in optical/NIR to mag >24
 Million NIR galaxy spectra, full extragalactic sky coverage, Galactic sources
- Unique database for various fields in astronomy: galaxy evolution, search for high-z objects, clusters, strong lensing, brown dwarfs, exo-planets, etc
- Synergies with other facilities: JWST, Planck, Erosita, GAIA, DES, Pan-STARSS, LSST, E-ELT etc (e.g. to do NIR from the ground would take several x 10³ yr)
- All data publicly available through a legacy archive

Enormous database to harvest

Euclid in context

	VISTA	SASIR	Euclid	
Wide survey	680 years	66 years	5 years	
Deep survey	72 years	7 years	"5 years"	

euclid

The ubiquitous symbol.. (hex U+039B)

Possible outcomes....

R. Scaramella SAIt 16 Maggio 201

 Ω_{m}

Different probes

