CHEOPS & PLATO 2.0

Partecipazione Italiana alle missioni esoplanetarie dell'ESA

> SAlt 2014 INAF - Milano

> > Isabella Pagano, INAF – OACT on behalf the CHEOPS and PLATO 2.0 Teams

CHEOPS CHaracterizing ExOPlanet Satellite

- S class mission (S1)
- Budget envelope < 150 M€ (≤ 50 M€ from ESA)
- Launch: end of 2017 => fast development (TRL 5 when selected)
- Operation: 3.5 (+1.5) yrs shared launch
- Follow up mission: measure radius of known planets

Key Science Goals:

- ✓ Mass-radius relation for super-Earths & Neptunes
- \checkmark Identification of planets with atmospheres
- ✓ Constraints on planet migration paths
- \checkmark Cloud coverage in hot-Jupiter atmospheres
- ✓ Targets for future spectroscopic facilities
 20% open time (selection through ESA)

PLATO 2.0: PLAnetary Transits & Oscillations of Stars

- M class mission (M3)
- Budget envelope ~ 650 M€ (≤ 500 M€ from ESA)
- Launch: 2024 Launcher Soyuz Fregat from Kourou
- Operation: 6.25 (+2) yrs

Key Science Goals:

- Detection of terrestrial exoplanets in the habitable zone of solartype stars and characterization of their bulk properties needed to determine their habitability.
- ✓ Understanding of the formation, the architecture, and the evolution (ages) of planetary systems by means of a full inventory of the physical properties of thousands of rocky, icy, and gaseous giant planets.

The Cosmic Vision Themes

- How do planets and planetary systems form and evolve?
- Is our Solar System special? Are there other systems like ours?
- What makes planets habitable?
- Is the Earth unique or can life also developed elsewhere?

CHEOPS & PLATO 2.0 addresses the ESA Cosmic Vision science questions and follows the recommendations of ESA's Exoplanet Roadmap Advisory Team (EPRAT).

Methods for detection and bulk characterization of planets

Transit Method

Radial velocity method

- \rightarrow Orbit parameters
- → Orbital inclination, *i*
- → Planet radius

- \rightarrow Orbital parameters
- → Minimum planet mass, *m* sin *i*

True planet mass and mean density

Planet detection today

- Current status: ~3000 planet candidates, ~1000 confirmed exoplanets and ~800 validated
- *Kepler* mission and radial-velocity surveys \rightarrow small and low-mass planets are numerous

However, only few detections of small planets in the habitable zone, and no characterization.

Diversity of "super-Earths"

$2-10 \text{ M}_{\text{E}}$

- Masses vary by a factor of ~4 (with large errors)
- Radii vary
 by a factor of ~3

Diversity of "super-Earths"

2–10 M_E

- Masses vary by a factor of ~4 (with large errors)
- Radii vary by a factor of ~3

→ We need both: Accurate masses & radii to separate terrestrial from mini-gas planets.

"Super-Earths": diversity and implications on habitability

Solar System planets are NOT the general rule:

small ≠> rocky, large ≠> gaseous

- Small exoplanets are very diverse: from Earth-like to mini-gas planets
 - Mini-gas planets are likely not habitable

• Silicate-iron planets are prime targets for atmosphere spectroscopy

Both CHEOPS and PLATO 2.0:

- \rightarrow will identify potentially habitable planets (M \rightarrow FGK dwarfs)
- \rightarrow and will characterize targets for atmosphere spectroscopy

Status: Characterized "super-Earths" in their habitable zone

Detected super-Earths

- Goal: Detect and characterize super-Earths in habitable zones
- Status: very few small/light planets in habitable zones detected

Status: Characterized "super-Earths" in their habitable zone

"Super-Earths" with characterized radius <u>and</u> mass

- Goal: Detect and characterize super-Earths in habitable zones
- Status: very few small/light planets in habitable zones detected

→ No characterized "super-Earths" in its habitable zone

The need for bright stars

Known planets from radial velocity and transit surveys

Why have so few targets been characterized?

 \rightarrow Transit surveys targeted faint and distant stars to maximize detection performance.

→ Radial velocity surveys need bright stars (≤11 mag) to keep telescope resources limited.

Lessons learned:

 \rightarrow Future transit missions must target bright stars

Prospects: Characterized "super-Earths" in their habitable zone

"Super-Earths" with characterized radius <u>and</u> mass

- No rocky planets in the habitable zone known with certainty
- CHEOPS will cover orbital periods up to ~50 days
- PLATO 2.0 will characterize planets outside the Mercury's orbit!

Prospects: Characterized "super-Earths" in their habitable zone

"Super-Earths" with characterized radius <u>and</u> mass

PLATO 2.0 will detect and bulk characterize small planets up to the habitable zone of solar-like stars.

Planet diversity and planet formation

- Mean density varies by two orders of magnitude for a given mass
- Planets of Earth mass and below remain to be detected and characterized

Planet diversity and planet formation

Planet diversity and planet formation

Test planet formation models:

- What is the observed critical core mass?
- Can super-massive rocky planets exist? How are they formed?
- Are light planets with H₂-dominated atmospheres common?

Planets, planetary systems and their host stars evolve.

PLATO 2.0 will for the first time provide accurate ages for a large sample of planetary systems.

Loss of primary, atmosphere

Stellar radiation, wind and magnetic field

Cooling, differentiation

Cooling, differentiation

Secondary atmosphere (plate)tectonics Formation in proto-planetary disk, migration

CHEOPS & PLATO 2.0 missions: How we do them

Image Copyright: Mark A. Garlick. Science Credit: Carole Haswell & Andrew Norton (The Open University)

Total weight: 250 kg Total length: 1.3m

CHEOPS Optical design

Polychromatic defocused PSF with 30 pixel diameter

1.0000
0.9000
0.8000
0.7000
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000
0.0000

Entrance Pupil Diameter	320 mm
Central Obstruction Diameter	68 mm
(+8.6% collecting area with respect to	o 300 mm)

Distance M1-M2 Effective Focal Length T Effective Focal Length S F/# Tel F/# Sys	Fel Sys	300 mm 1600 2681.4 mm 5 8.4
Wavelength range		400-1100 nm
Detector format Pixel size Plate scale	1 arcsec/pix	1024×1024 13 µm xel
FoV (FP diagonal) FoV BEO Opt. FoV box (diagonal)		0.40 degrees 0.32 degrees 0.08 degrees

Optical Engineer: D. Magrin - OAPD

CHEOPS in Italy

APD UNIPE 5 INAF structures OACT (S, P) OAPD (S, P) OAPA (S) OAT (S) □ FGG (S) Dip. Fis. e Astron. UNIPD (S) □ ASDC (GS) NAF I-PDR 30 Jun 2014 I-CDR Jan 2015 Delivery of TEL for further integration in Nov 2015

PLATO 2.0 Instrumental Concept

To observe a significant high number of Bright Stars
 → Very wide field + large collecting area: multi-instrument concept

1 ICU

- Sp. range = 500 1050 nm
- 32 « normal » cameras : cadence 25 sec
- 2 « fast » cameras : cadence 2.5 sec
- 132 CCDs

PLATO 2.0 Instrumental Concept

To observe a significant high number of Bright Stars
 → Very wide field + large collecting area: multi-instrument concept

1 ICU

- Sp. range = 500 1050 nm
- 32 « normal » cameras : cadence 25 sec
- 2 « fast » cameras : cadence 2.5 sec
- 132 CCDs

Concept of overlapping line of sight

Observing strategy

Baseline observing strategy:

- 6 years nominal science operation
- 2 long pointings of 2-3 years + step-and-stare phase (2-5 months per pointing)

\rightarrow covers ~50% of the sky

ASTRIUM Concept

General view showing the PLM side(left) of the spacecraft and the sunshield (right)

PLATO Definition Phase

Thales-Alenia Space Concept

PLATO spacecraft configuration and external equipment layout (XSC, YSC, ZSC = Spacecraft Reference Frame - SRF)

Total numbers of characterized planets in core sample

Number of characterized planets (**Earth to Neptune mass**) after detailed model of radial velocity efforts and the impact of stellar activity:

The PLATO Italian team

ASI Contracts (Assessment and Definition phases)

- ♦ G. Piotto UniPD
 - ♦ I. Pagano INAF
 - ♦ E. Pace UniFI

- Università di Padova, Dip. di Astronomia (Science)
- INAF
 - engineers active in PLATO in Italian research institutes! Brera (Science, Payloan, Entists)
 IFSI-Roma (Science, Payloan, 70 science)
 FGG (Payload)
 OA P-'

 - Capodimonte (Scie out 120 scientists)
 OA Roma (+Teramo) (About 120 exoplan)
 OA Arcetri (Scientia) interested to exoplanets

 - IASF Roma (Science)
- Università di Firenze, Dip. di Fisica e Astronomia (Payload)
- ASI-ASDC (PDC, Science)

Italian Contribution to PLATO 2.0

Science Preparation

.

- Field characterization and target selections
- Telescope Optical Units
- Instrument Control Unit
- Participation to the PDC (ASDC)

BreadBoard of the PLATO Telescope

- Aspheric feasibility demonstrated.
- CaF lenses demonstrated.
- Alignment in warm demonstrated.

Testing the BB into the space environment...

Comparison with expected figures

Italian Sajanga Warking Toom

Univ. Salerno, Gabriella Raimondo

Berlino 2011

Next PLATO Conference iCatania December 2014

The end