SAIt - Società Astronomica Italiana - INAF - Istituto Nazionale di Astrofisica

LVIII Congresso SAIt - MILANO - 13-16 maggio 2014 - Palazzo Cusani via Brera 15

"Strutture cosmiche: dal Sistema Solare ai confini dell'Universo"

# stelle e galassie primordiali

## **Raffaella Schneider**

**INAF/Osservatorio Astronomico di Roma** 





Matteo de Bennassuti, PhD INAF/OAR



Stefania Marassi, Pdoc INAF/OAR



Luca Graziani, Pdoc INAF/OAR



Rosa Valiante, Pdoc INAF/OAR

Stefania Salvadori, Kapteyn, Groningen Marco Limongi, INAF/OARoma Alessandro Chieffi, INAF/IAPS Kazuyuki Omukai, Tohoku University

Gen Chiaki, Tokyo University Takaya Nozawa, NAOJ Naoki Yoshida, Tokyo University Daisuke Kawata, University College, UK

# FIRST – Scientific background



# FIRST – Scientific background



# from the first stars to the local universe



# stellar archaeology with the most metal poor stars

[Fe/H] < -3 [Fe/H] < -5

| Survey | Effective sky<br>coverage | Effective<br>mag limit | N < -3.0<br>(EMP) | N < -5.0<br>(HMP) | People                         |
|--------|---------------------------|------------------------|-------------------|-------------------|--------------------------------|
| HES    | 6,400 deg <sup>2</sup>    | B < 16.5               | 200               | 2                 | Christlieb et al.              |
| SEGUE  | 1,000 deg <sup>2</sup>    | <i>B</i> < 19          | (1,000)           | (10)              | Beers et al.;<br>Caffau et al. |
| LAMOST | 12,200 deg <sup>2</sup>   | <i>B</i> < 18.0        | (3,000)           | (30)              | Zhao et al.                    |
| SSS    | 20,000 deg <sup>2</sup>   | B < 17.5               | (2,500)           | (25)              | Keller et al.                  |

2014 Nature, 506, 463

A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36-670839.3

S. C. Keller<sup>1</sup>, M. S. Bessell<sup>1</sup>, A. Frebel<sup>\*</sup>, A. R. Casey<sup>1</sup>, M. Asplund<sup>1</sup>, H. R. Jacobson<sup>\*</sup>, K. Lind<sup>\*</sup>, J. E. Norris<sup>1</sup>, D. Yong<sup>1</sup>, A. Heger<sup>+</sup>, Z. Magic<sup> $\Delta$ 1</sup>, G. S. Da Costa<sup>1</sup>, B. P. Schmidt<sup>1</sup>, & P. Tisserand<sup>1</sup>

[Fe/H] < -7.1

# the metallicity distribution function of the Galactic halo



Schörck et al. 2009 Christlieb 2013

### the C to Zn abundances of metal poor stars



Cayrel et al. 2004; Spite et al. 2005; François et al. 2007

## carbon-enhanced metal poor stars

~ 20 % of stars with [Fe/H] < -2 are C-enhanced: [C/Fe] > 0.7



Yong et al. 2013; Norris et al. 2013

# C-normal and C-rich stars: different formation patways?



C-normal stars with [Fe/H] < -3.5 can not form through metal line-cooling

Dust-driven fragmentation if the  $D > D_{cr} = (4.4 \pm 2.0) \times 10^{-9}$ 

$$SD > 1.4 \times 10^{-3} \text{cm}^2/\text{gr} \left[\frac{T}{10^3 \text{K}}\right]^{-1/2} \left[\frac{n_{\text{H}}}{10^{12} \text{cm}^{-3}}\right]^{-1/2}$$

Schneider & Omukai (2010) Schneider et al. (2012)

### **Questions that we want to address:**

What are the formation pathways of C-normal and C-rich stars?

What are the physical processes that shape the low-[Fe/H] tail of the MDF?

Why is the relative fraction of C-normal and C-rich stars varying with [Fe/H]?





Schneider et al. 2012

# simulating the birth environment of C-normal and C-rich stars

Marassi et al. 2014



a single formation pathway based on dust-driven fragmentation



# GAMETE GAMETE **GAlaxy MErger Tree and Evolution** Salvadori et al. 2007, 2008, 2009; Valiante et al. 2011, 2014; de Bennassuti et al. 2014 star formation and chemical evolution dark matter halo merger tree $M_{\rm MW} = 10^{12} M_{\rm sun}$

# The MW and its dusty progenitors



## The MW and its dusty progenitors



The low-[Fe/H] tail of the MDF



Pop III stars IMF  $\rightarrow$  [10-140] M<sub>sun</sub> and explode as faint ccSN Pop III/II transition criterium  $\rightarrow$  degenerate with the Pop III IMF Change of slope in the low-[Fe/H] tail  $\rightarrow$  radiative feedback effects?

# Metallicity distribution of C-rich stars



## **Relative fraction of C-rich and C-normal stars**



data points from Yong et al. (2013)

# **Conclusions:**

Stellar Archaeology of the most metal-poor stars is a powerful way to constrain the first stellar generations

#### What are the formation pathways of C-normal and C-rich stars?

Ordinary vs faint SN: a single thermal pathway with dust-driven fragmentation

#### What are the physical processes that shape the low-[Fe/H] tail of the MDF?

very sensitive to the adopted Pop III IMF and SN yields interplay between chemical and radiative feedback effects

#### Why is the relative fraction of C-normal and C-rich stars varying with [Fe/H]?

sensitive to the Pop III/II transition observed CEMP fraction at [Fe/H] > -4 may require that a fraction of Pop II SN is faint