

cosmoIGM: scientific background

THEORY: NUMERICAL MODELLING OF **3D** COSMIC WEB (DARK MATTER, GAS and GALAXIES): 80% of visible matter is in the form of filaments

DATA: 1D TRANSMITTED LYMAN-α [5] FLUX (1s→2p resonant transition)

DARK MATTER

BARYONS

NEUTRAL HYDROGEN

Tools

Theoretical work: simulation of the Universe in national and international Supercomputing facilities

HPCS Darwin @ Cambridge (UK)

Observations: from international State-of-the-art spectrograph

European Southern Observatory VLT at Paranal (Chile)

Sloan Digital Sky Survey in New Mexico (USA). US collaboration

Forecast for future instruments

Euclid ESA satellite

Fermi Blue Gene @ CINECA (Italy)

E-ELT: European Extremely Large Telescope (39 mt.)

cosmoIGM: interdisciplinary science

COSMOLOGY

IGM as a tracer of the large scale structure of the universe: constraints on its dynamical and geometrical state

cosmoIGM

IGM as a probe of fundamental physics: constraints on coldness of cold dark matter and neutrino mass fraction

Galaxy/IGM interplay: constraints on the physical state of the IGM and galactic feedback mechanisms

PARTICLE PHYSICS

GALAXY FORMATION

cosmoIGM: the team

PI: Matteo Viel

Dr. Paramita Barai. Nationality: *Indian*.PhD and 2 Postdoctoral Fellowships in USA Universities.6 yrs of postdoctoral international experience in Canada/USA.

Dr. Francisco Villaescusa-Navarro. Nationality: *Spanish* PhD from Valencia University. 2yrs of international experience in USA and Italy during his PhD.

MAIN TOPIC: Cosmological neutrinos

MAIN TOPIC: Galaxy Formation

Dr. Tae-Sun Kim: Nationality: *South Korean*Postdoc at ESO, Cambridge, Potsdam, Wisconsin Univ.

MAIN TOPIC: Observations of IGM and galaxy IGM/interplay

Enea Di Dio: Nationality: Swiss

PhD Student at Geneve University (Switzerland)

MAIN TOPIC: LSS unveiling the 3D structure of our Universe

SCIENTIFIC HIGHLIGHT

BARYON ACOUSTIC OSCILLATIONS IN LYMAN-α FLUX

BOSS: Baryonic Acoustic Oscillations Spectroscopic Survey

3D spectroscopy of a Volume 20 (Gpc/h)³

3D correlations in the transverse directions in order to remove continuum fluctuations and recover fluctuations over large scales

BOSS: Baryonic Acoustic Oscillations Spectroscopic Survey

Quantitative Constraints on the geometry of the Universe

This could be important only for models for which there is a significant departure from Λ CDM at high-z (for example Early Dark Energy cosmologies)

SDSS

3D cross-correlation between Lyman- α flux and quasars

$$P_{qF}(\mathbf{k}) = b_q \left[1 + \beta_q \mu_k^2 \right] b_F \left[1 + \beta_F \mu_k^2 \right] P(k)$$

UVES/VLT high resolution spectra

Quantitative Constraints on the IGM thermal state

$$T(z) = T_0 \left[1 + \delta(z) \right]^{\gamma(z) - 1}$$

Temperature-density relation is set by equilibrium between cooling and heating processes

(important nuisance parameter)

SCIENTIFIC HIGHLIGHT

MASSIVE NEUTRINOS IMPACT ON THE UNIVERSE LARGE SCALE STRUCTURE

COSMOLOGICAL NEUTRINOS - I: WHAT TO START FROM

$$0.056 (0.095) \text{ eV} \lesssim \sum_{i} m_i \lesssim 6 \text{ eV}$$

COSMOLOGICAL NEUTRINOS - II: LINEAR MATTER POWER

COSMOLOGICAL NEUTRINOS: NON-LINEAR MATTER POWER

 $\verb| http://www.sns.ias.edu/~spb/index.php?p=code} Cosmic Scale \\$

COSMOLOGICAL NEUTRINOS: BIAS BETWEEN MATTER AND HALOES

COSMOLOGICAL NEUTRINOS: MASS FUNCTIONS OF GALAXY CLUSTERS

COSMOLOGICAL NEUTRINOS: APPLICATION TO GALAXY CLUSTERS

å

fits better the N-body results

✓ P_{cdm} rather than P_{matter}

✓ "Tension" between Planck

CMB and Planck SZ clusters
is further increased by Δσ₈=0.02

SCIENTIFIC HIGHLIGHT

GALACTIC WINDS AND THE IGM/CGM

Simulated IGM/CGM environments and metal enrichment

Barai, MV+14

SCIENTIFIC HIGHLIGHT

THE COLDNESS OF COLD DARK MATTER

THE COSMIC WEB in WDM/LCDM scenarios

z=0
$$\frac{T_x}{T_{\nu}} = \left(\frac{10.75}{g_*(T_D)}\right)^{1/3} < 1$$

$$k_{\rm FS} = rac{2\pi}{\lambda_{
m FS}} \sim 5 \, {
m Mpc^{-1}} \left(rac{m_x}{1 \, {
m keV}}
ight) \left(rac{T_
u}{T_x}
ight)$$

$$\omega_x = \Omega_x h^2 = \beta \left(\frac{m_x}{94 \, \mathrm{eV}} \right)$$
 $\beta = (T_x/T_
u)^3$

$$k_{\rm FS} \sim 15.6 \frac{h}{{
m Mpc}} \left(\frac{m_{
m WDM}}{1 {
m keV}} \right)^{4/3} \, \left(\frac{0.12}{\Omega_{
m DM} h^2} \right)^{1/3}$$

z=5

z=2

Viel, Markovic, Baldi & Weller 2013

DARK MATTER DISTRIBUTION

GAS DISTRIBUTION

HI DISTRIBUTION

 $\delta_F = F/<F>-1$

RESULTS FOR WDM MASS

 $m > 3.3 \text{ keV } (2\sigma)$

SUMMARY

- BAO discovery in the Lyman- α flux at z=2.2 from the BOSS collaboration
- Characterization of neutrino properties in the Large Scale Structure and around haloes. Constraints from Planck SZ.
- Characterization of IGM/CGM environment and metallicity distribution in several feedback models
- Constraints on small scale structure of Dark Matter using high-resolution QSO spectra.
- **COMING SOON**: **X-Shooter LP programme** results on WDM and Temperature

Quantitative Constraints on the neutrino masses using CFHTLS and VIPERS data

CONSTRAINTS

95% C.L. $\sum m_{\nu}$ [eV]	Without HST Prior		With HST Prior	
	$\ell_{\rm max} = 630$	$\ell_{\rm max}=960$	$\ell_{\rm max} = 630$	$\ell_{\rm max} = 960$
WMAP7	1.17		0.50	
WMAP7 + CFHTLS	0.64	0.43	0.41	0.29
WMAP7 + SDSS + CFHTLS	0.47	0.35	0.35	0.28
WMAP7 + SDSS + SN + CFHTLS	_	_	0.33	0.27