OBSERVATIONS OF GRBs IN VERY HIGH ENERGY REGIME

Alessandro Carosi

INAF/ASI Science Data Center & University of Siena

FENOMENOLOGY OF GRB: Disovered in 1973 by Vela satellites: 12 GRB in the keV-MeV energy range First systematic studies from the '90s.

SAX (0.1-300 KeV)

Accurate localization Discovery of the afterglow Confirmation of the cosmological scenario

SWIFT (BAT 15-150 KeV XRT 0.3-10 KeV)

New structures in the afterglow Afterglow of short GRB Discovery of flares

GRB IN THE VHE REGIME: HYSTORICAL HINTS

EGRET (20 Mev-30 GeV) : GRB940217

18 GeV photon was observed

EGRET observed emission above 30 MeV for more than an hour after the prompt emission.

Unlike optical/X-ray afterglows, gamma-ray luminosity did not decrease with time: additional processes contributing to high energy emission?

GRB IN THE VHE REGIME: HYSTORICAL HINTS

EGRET (20 Mev-30 GeV) : GRB941017

Classic sub-MeV component observed in BATSE

Second Higher Energy component has been observed within 14-47 seconds by EGRET and at later times by both BATSE and EGRET.

The second emission component lasts ~200sec. And it increases the total energy flux by factor of ~3

GRB IN THE VHE REGIME: HYSTORICAL HINTS

MILAGRITO (500 GeV-20 TeV) GRB970417a

15

100

EGRET observations triggered new questions in GRB field:

- Is there a second emission components? What is its origin?
- How the observed HE photons are linked to the prompt emission?
- How common are these HE events?

FERMI

GBM (8 keV – 1 MeV)

 Onboard trigger and localization
 Spectroscopy

LAT (20 MeV – 300 GeV)

Pair-production telescope for HE emission

Onboard and ground trigger

GRB090510 (short)

A. Caros

t(s)

But GRB 080916C

DURATION DISTRIBUTION

Systematically longer duration In LAT

Different component ?
Experimental bias ?

(GBM background dominated)

The bulk Lorentz factor of GRBs can be constrained by observations in the HE:

The compactness problem implies that the bulk Lorentz factor must be large

(if GeV emission is originated in the same zone of sub-MeV photons)

Observations of GRBs can discriminate between different EBL models

MAGIC limit

TETRIS SCENARIO FOR VHE ASTROPHYSICS:

- High energy emission is often extended in time, even for short GRBs
- Delayed onset of the high energy emission
- LAT and GBM spectral slopes are different (but one case)

- Common temporal decay law
 - for LAT GRBs (Ghisellini+2010)
- LAT fluence < GBM fluence</p>
- Bulk Lorentz factor
- EBL models
 - Lorentz invariance

GAMMA RAY ASTRONOMY EXPERIMENTAL TECHNIQUE:

Space based instruments (pair production telescopes)

Detection of the "primary" gamma Energy range < 100 GeV Eff. Area= ~ m Duty cycle 100% **FOV:** ~ 1 sr **High economic costs**

(detector Cherenkov)

Secondary detection Energy range > 60-100 GeV Eff. Area: $\sim 10^{4}/10^{5}$ m Duty cycle 10% FOV: ~ 0.01 sr Low economic costs

THE THEORETICAL PICTURE

Many models have been suggested for HE emission justification:

THE VHE REGIME: A GOOD OBSERVATIONAL PROOF

A SCREENSHOT OF THE PROMPT EMISSION

Internal pair-production absorption makes difficult observation in the VHE range

Most probably candidates for high energy emission: (XRF) $(\Gamma > 500)$

THE VHE REGIME: A GOOD OBSERVATIONALS PROOF

The cooling frequency for protons can easily reach the GeV regime.

strong and prevalent proton synchrotron component in the GeV range is possible.

Afterglow in hadronic scenario

- Discriminating between hadronic
- and leptonic emission model
- Constraining space parameters

IACT OBSERVATION:

Difficult task for cherenkov telescopes:

•Low duty cycle (10%)•Gamma opacity due to EBL absorption

 $\phi^{\mathrm{obs}}(E) = \phi(E) \cdot \exp(-\tau(E, z))$

Z_{max} = 1 for an energy threshold of about 60 GeV

IACT observation possible if :

- Low energy threshold
- Fast repointing
- High C factor : Near (but not too much!) GRB

MAGIC DUTY CYCLE FOR GRB:

Sun below the horizon ZA>103 degree

Zd < 60deg

Humidity <90% & wind Speed <10 m/s

Angle from the moon <30 degree

Dedicated filter for GBM packets

MAGIC IN ACTION!

MAGIC STATISTICS:

MAGIC STATISTICS: From 2005 MAGIC observed 68 GRBs

10

Dominguez+ 10

Two prompt emission

GRB 050713a

(And

GRB 050904...)

MAGIC STATISTICS:

THE CASE OF GRB080430:

່ທ

vF_v (erg cm⁻⁻

Zenith angle: 22°-30°

- Delay: <u>1h 19m</u>
- Redshift: 0.767

Follow up observation start about 4000s after the prompt emission due to bad weather conditions at the MAGIC site

AND THE OTHER IACT

Table 2. H.E.S.S. observations of GRBs from March 2003 to October 2007.

F.Aharonian et al. A&A 2009

	Standard-cut analysis							Soft-cut analysi Temporal ar						analysis				
GRB^a	T _{start} I	xposure	N _{tel} Z.A.	N_{ON}	N_{OFF}	α Exces	s Signi-	E_{th}	Flux ULs	N_{ON}	N_{OFF}	α	Exces	s Signi-	$E_{\rm th}$	Flux ULs	$\chi^{2}/d.o.f.$	$P(\chi^2)$
	(min)	(min)	(°)				ficance	(GeV)	(cm ⁻² s ⁻¹)					ficance	(GeV)	(cm ⁻² s ⁻¹)		
070621	6.5	234.6	4 16	204	2273	0.091 -2.6	-0.18	250	2.8×10^{-12}	731	5903	0.13	-6.9	-0.24	190	5.6×10^{-12}	19.2/28	0.89
050801	15.0	28.2	4 43	13	173	0.091 -2.7	-0.68	400	3.2×10^{-12}	46	442	0.13	-9.3	-1.2	310	1.6×10^{-11}	0.168/3	0.98
070429A	64	28.2	4 23	4	78	0.091 -3.1	-1.2	290	2.4 × 10 ⁻¹²	20	203	0.13	-5.4	-1.0	220	1.0×10^{-11}	6.39/3	0.094
041211Bª	267.1	14.2	3 64	9	8/	0.11 -0.67	-0.21	1850	6.8 × 10-12	27	236	0.17	-12	-1.9	1360	2.6 × 10 ⁻¹¹	14.6/14	0.40
	/42.3 632.2	56.2	4 44	/6	272	0.065 -1.9	-0.21	380	3./ X 10-12	31/	4303	0.08	5 -40	-2.4	280	1.8×10^{-11}	<u> </u>	
071003 ^b	601.1	56.2	2 /1	25	272	0.10 -11	-2.2	490	5.6 × 10 ⁻¹²	70	765 547	0.14	-15	-1.4	200	1.4 × 10 ··· 1.5 × 10-11	32.3/12	0.0012
041006	626.1	S0.2 81.9	4 27	80	204	0.10 4.0	0.95	200	1 1 × 10 ⁻¹¹	302	1974	0.14	20	1 1	150	6.8×10^{-11}	8 89/9	0.45
070419B	907	56.4	4 47	28	391	0.091 -7.5	-1.3	700	2.4×10^{-12}	121	1069	0.13	-13	-1.0	520	7.5 × 10 ⁻¹²	11.9/6	0.064
060526	284.2	112.8	4 25	93	1068	0.10 -13.8	-1.3	280	2.9 × 10 ⁻¹²	492	3711	0.14	-38	-1.6	220	9.2×10^{-12}	19.8/12	0.072
070808	306.2	112.8	4 34	49	659	0.091 -11	-1.4	310	3.2 × 10 ⁻¹²	209	1733	0.13	-7.6	-0.49	260	7.5 × 10 ⁻¹²	15.8/12	0.20
070721B	925.7	103.8	4 40	59	984	0.063 -2.5	-0.31	440	1.4×10^{-12}	237	2676	0.08	3 14	0.89	320	8.8×10-12	15.5/11	0.16
061110A	407.68	112.8	4 25	76	838	0.093 -1.9	-0.21	280	4.3 × 10-12	314	2671	0.13	-20	-1.0	200	8.4×10 ⁻¹²	4.66/11	0.95
030329°	16493.5	28.0	2 60	4	26	0.14 0.27	0.13	1360	2.6 × 10 ⁻¹²								5.93/3	0.12
050726	772.7	112.8	4 40	107	1031	0.083 21	2.1	320	7.1 × 10-12	333	2619	0.11	42	2.3	260	3.4 × 10 ⁻¹¹	14.7/12	0.26
050209	1208.5	168.6	4 48	104	1096	0.11 -18	-1.6	480	4.4×10^{-12}	528	4204	0.14	-73	-2.8	340	1.5×10^{-11}	36.3/18	0.0065
070612B	901.7	112.8	4 18	104	1190	0.091 -4.2	-0.39	240	4.1×10^{-12}	415	3233	0.13	11	0.51	180	1.5×10^{-11}	4.87/12	0.96
060403	820.4	52.8	4 39	33	252	0.091 10	1.9	440	4.8×10^{-12}	128	875	0.13	19	1.6	320	1.3×10^{-11}	10.4/6	0.11
060505	1163	111	4 42	99	837	0.091 23	2.4	520	5.6 × 10-12	339	2740	0.13	-3.5	-0.18	400	3.9×10^{-12}	22.1/12	0.036
050509C	1289	28.2	4 22	31	344	0.083 2.3	0.41	200	1.7 × 10-12	112	965	0.11	4.8	0.43	150	1.5 × 10-10	0.301/3	0.96
070721A	893.5	112.8	4 30	90	1436	0.059 5.5	0.58	320	6.5 × 10-12	280	3857	0.07	/ -12	-0.86	260	1.3 × 10-11	0.78/12	0.87
070724A	927.5	56.4	4 25	37	444	0.091 7.5	0.88	480	7.5 × 10 ···	185	1442	0.15	-9.5	-0.55	370	1.0 × 10 ···	5 35/6	0.11
070209	920.1	50.4	4 41	57	444	0.091 -5.4	-0.51	400	2.5 X 10 ···	165	1442	0.15	4.0	0.55	370	1.1 X 10	5.55/0	0.50
10-	5																	
10																		
-2)																		
등 10 ⁻	-° Swift H.E.S.S.							S.S.	Huge Tdelay (~10 hr)									
D	3hrs						hrs	Ligh onergy threehold										
<u>•</u> 10 ⁻	7	<u>}</u> , ∖ ∎	3AT (9s)									FII	jn e	ener	gy t	nresn	0 10	
Щ									9s							A		
$\stackrel{\circ}{\geq} 10^{-1}$	8														10			
6 0	XR														The last	-East		
∾ Ш	9 (3h							•										
10																		
10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9}													C N I	AX PARTS				

Photon energy (keV)

AND THE OTHER IACT

				Standa	d Source	e Analysis	Soft Source Analysis			
GRB	T_{delay} (s) ^{α}	$T_{obs} (min)^{\beta}$	Elev. Range $(^{\circ})^{\gamma}$	$E_{\rm th}~({\rm GeV})^{\delta}$	σ^{ζ}	Upper Limit	$E_{\rm th} \ ({\rm GeV})^{\delta}$	σ^{ζ}	Upper Limit	
070223	1.7×10^4	74.1	67-78	220	1.3	9.5×10^{-12}	150	0.8	2.0×10^{-11}	
070419A	295	37.7	32-36	610	-0.1	8.1×10^{-12}	420	-1.0	1.0×10^{-11}	
070521	1118	75.4	63-88	190	0.1	4.6×10^{-12}	120	-0.3	9.6×10^{-11}	
070612B	201	131.9	46 - 50	380	0.6	2.5×10^{-12}	230	0.6	7.1×10^{-12}	
071020	5259	73.5	30-43	570	1.8	1.7×10^{-11}	330	0.5	2.6×10^{-11}	
080129	1456	31.4	47 - 50	370	1.2	7.7×10^{-12}	220	1.4	1.2×10^{-11}	
080310	342	198.0	48 - 58	270	0.2	2.2×10^{-12}	170	1.8	$7.3 imes 10^{-12}$	
080330	156	107.8	64-88	180	0.2	4.0×10^{-12}	120	-0.7	6.3×10^{-12}	
080409	6829	19.0	31 - 35	1300	0.1	5.3×10^{-11}	720	-0.7	3.8×10^{-11}	
080604	281	151.8	33-70	250	1.1	4.7×10^{-12}	160	0.9	1.2×10^{-11}	
080607	184	56.0	32 - 46	400	1.5	1.6×10^{-11}	310	1.1	2.4×10^{-11}	
081024A	150	161.2	55 - 60	310	-1.5	1.5×10^{-12}	190	-2.0	2.2×10^{-12}	
090102	5344	83.1	33 - 48	400	-0.1	8.4×10^{-12}	230	-0.3	1.8×10^{-11}	
090418A	261	30.4	86-88	190	1.0	1.0×10^{-11}	120	1.7	$3.0 imes 10^{-11}$	
090429B	141	158.8	70-88	180	1.1	$3.9 imes 10^{-12}$	120	1.0	$9.6 imes 10^{-12}$	
090515	356	78.8	37 - 57	340	0.1	6.3×10^{-12}	220	1.2	2.5×10^{-11}	
							-			

VERITAS OBSERVATIONS OF GAMMA-RAY BURSTS

Upper limits are given at the 99% confidence level in terms of νF_{ν} at $E_{\rm th}$, assuming the spectral indices of 2.5 and 3.5 for the standard source and soft source analysis, respectively, in units of erg cm⁻² s⁻¹. ^{α}Time between the GRB trigger time (T_{trig}) and the beginning of VERITAS GRB observation. ^{β}Duration of VERITAS observation. ^{γ}Elevation range of the VERITAS observation. ^{δ}The VERITAS energy threshold. ^{ζ}Statistical significance (standard deviations) of signal counts observed by VERITAS at the GRB position.

More similar to MAGIC but higher threshold

Low-energy section energy threshold of 20-30 GeV ~24m telescopes

Medium Energies: mCrab sensitivity 100 GeV–10 TeV 12m telescopes

High-energy section 10 km² area at multi-TeV energies ~5m telescopes

TOWARD THE NEXT GENERATION

Simulated CTA performance:

Optimistic: 4 LST (Eth=10 GeV) + 75 MST Baseline: 4 LST (Eth=25 GeV) + 25 MST

TOWARD THE NEXT GENERATION

Simulated GRB population:

2 spectral "type" <</p>

But CTA performance is still largely uncertain Extrpolation of the Band function to GeV energies

Power law component added on top of the Band function with an index -2.0

- Redshift distribution from Swift
- EBL model from Gilmore, Somerville, Dominguez and Primack

Caros

CONCLUSIONS:

High energy component is expected for several competing emission processes during both prompt and afterglow in GRBs. Still no clear theoretical picture is really able to describe all the new features observed with Fermi/LAT.

All the IACTs, and in particular the MAGIC telescope, are currently performing GRB follow up observations

• Until today, no evidence of VHE photons has been obtained in this energy regime. In some special case also the evaluated UL could be important to discriminate the emission processes or constrain the EBL models.

CTA will probably open new era in VHE astrophysics and GRB field

